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h the first part, the boundary conditions for an oyen whl tunnel
(incompressible flow) are emmmm with special reference to the effectf3
of the closed entrance end etit sections o Basic conditicms are that the
velocity must be continuous at the entmmce lip end that the velocities
in the updz’eam and downsin’eamclosed _portioIMmust be egual. For tie
two-dimensionBI open tucnel, titxmxrting possibilities develop frm the
fact that the pressures m the two free surfaces need not be egual..

Electrical.enalo@es that might be used for solmbg the flow in
open wind tunnels are otilined. Two @@s are d.escri~ed- one in which
eleclmical potential correspmds to veloci~ potential.,end another in
which electrical potential corresponds to acceleration potential. me
acceleration-potentialanalogies are probably experimentally simpler
then the veloci&pot&ntial. emalogies.

h the second pint, solutions are derimd for four types of two-
dimensicmal open tunnels, tncludtng one in which the ~essums m the
two free surfaces are not egual.. Ihmerical results are given for every
case. Ih general, if the lifting element is more than half the tunnel
height fran the inlet, the boundary effec$ at the lifting element is
the same as for an infinitely long open *1.

Ih the third part is given a general method for calculathg the
boundary effect in an open circular w3nd tunnel of finite jet length.
Nmerical. results are given for a lifting element cmcen-tad at a
point on the exis.

lliTEiOZUCTION

The basic theory of boundary correcticms for an open ~ tunnel
w given by Randtl mmy years ago (reference 1) end has since been
used with reasonable success. The Ioflnitely 1~ open jet that was
assumed in Randtl te analysis, however, has been frequently questioned
as an adeguate represenkticm for m open wind tmmel, which normally
haE a relatively short jet between closed en*e end extt regims.
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The present examination of the &oblem was occasimed by
bouniery corrections for tests in the Iangley fti-scale
lsrge helicopter, of which the forwsxd edge of the rotor
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the need for
tunnel of a
disk reached

alm&t to ~e mouth of the entrence bell while the reex edge approached
the efit b@l. Previous studies (reference2) had shown that the
Prendtl theory was satisfacto~ for a w3ng h the usual position in the
tunnel (about 20 feet ihwnstieam of the entrance); but it was felt that
this simple theory was tideguate for such fer forward end rearward
locations of the liftlcg surface, and that S- f@er de~lopnt -
clesirabls. The only Wevious analysis bear= directly on the problem
seemed to be that of reference 3, which considema a Ht% el~t
concentrated at a yoint on the axis of a cticular olen tumnel of finite
jet lengthj however, the tm3atment therein was not rigorous, and was
justified only by a s-what heuristic discussion, so that its general
applicabil.i@ was not obvious. Other studies treated either two-
dimensimaI or tiJIY symetriti conditions (referencesk ELM5) ma
also aia not consider the closed exit region, so tit we e-t of
their applicabili~ to the present problem was not at ffist appsrent. A
similsr (1-ermanwartime report (refe~nce 6), which did not become available
until after the present paper was written, would have been more useful
in this respect because of the generall~ of its physical.discussion.

Because of the particular shape of the *1 cross section, a
reasonably s@le soluticm in terms of available fmctions seemed umlikely;
accordin@y, the Wtial effort was &ected tom tif~ we ~oblem
h such a way that it could be solved by analogy methods In an electrical d
tank. Identification ~f the necessery bounihry cmditions appeezed at
first to be smewha.t ~~bqj however, af%r reco@tion of s- of
the basic x@sical phencmena, the boundary conditions were readily
clsrified. The problem is thus considered now to be fairly well mder-
stood, at least insofar as it can be considered linear and mbfluenced
by turbulent mfing at the free surfaces or by the irregular nature of
the flow at the exit. As U ap??eerlater, howmer, PVe tic~c~
Uff iculties exist h the exnct solution by electrical-analogymethods, ,
so that, for exxmple, actual evaluation of the ttmnel interference for
the lerge helicopter fi the Imgley fW- scale *1, which problem
mt~tia the present research, has not yet been acca?@ished.

After the bomdery conditicms were clmified, analytical methods of
soltiian were developed for two-iUmensionsl end circular open tunnels.
These studies have been ca?ibinedwith the discussion of the boundmy
conditions and the electrical enalogies to form the present paper, whichs
it is hoped, will serve to clar~ basic concepts and establish a sound .
baais for any further work.

The report is divided into three perts. k PSL% I, the bomdary
conditions are bf-a and discussed for tie open wind tunnel with closed
entrance =a exit sections, end an outline is given of suggested electric-
al enaloaies applicable b W probl~. G1 part II, Analytical
solutions-em gGen for various two-dimensional
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together with nunerous calculated results. W pert m, a mtiod of
solution for the circular open tunnel is given, together with nmerical
results for the case of a lifting element concentrated at a point on the
axis of the tuanel. The treatment h every case is a ltiear one fn which
defamation of the jet boundary is considered to be small.

The parts were essentxkll,yindmpendent~ pzqared. Messrs. ~r
emd Diesendruck contributed the analysis of pert II. Mr. Eisenstadt
contribtied pert III. Dr. Khtzoff contmitmted part I, and, in the absence
of the others, prepsx’edthe nmerical. resulti of part II, made several
tier revisions, end served as general editor of the whole.

I“ - BOUNDARY

EL EC TRICA

/

CONDITIONS AND

L ANALOGIES

3h part I, boundary conditions for an open ~ *1 are discussed
with special reference to the effects of the closed entmance end exit
sectims. It is shown -t the veloci@ on the free stiace is not
necessarily egual to the Wloci_& far upstreem in the closed portion and
that cross-flows may exist in the free surface, unlike .iihecase of the
infinitely long open jet. A basic condition - analogous to we Ktiti-
Joukowsld conditim for the flow at the trailing edge of an airfoil - is
that the veloci~ be conttiuow at the e@rance lip. Electrical.~ogie~
that might be used for solving the flow h open wind tunnels are outlhed.
Two types are described - cme in which electrical potmtial corresponds
to velocity potential, and another h which eleclmkal potential corre-
sponds to acceleration potential.

.

BOUNIMRY CONDITR)NS

R&su& of Prandtlts theory.- b &andtl’s original discussion, in
whicl the entrence end efit regions ere neglected, the tunnel is con-
sidered as an Minitely long cylinder on the entire surface of which the
pressure is const&, whence, by BernouXli’s law, the veloci~ on the
surface is constant. H this velocity is consid.efidas the sum of the
undisturbed tunnel veloci~ U and a small per@rbation velocity (u,v,w)
due to the presence of a body in the jet, the conditicm is then

that (u+u)*+v2+#&&+2uu = cons-t, fram which it is cal-a
that u is constant over the entire surface. Furthermore, since u is
obviously zero f= k front of the body, it must be zero over the entfie
surface.

A corollary is that, on the jet surface, the perturbation veloci~
normal ta u (that is, the circumferential veloci~) is also zero, as is
readily shown fram a consideration of the rectangdsr path SPQR on the
surface of the jet. (See fig. l(a).) AS ~ j~t been s-, we

— . . . . .. . . .-- .-— ————— ——–—.. — —.— --- —. ___ .-. ——..
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velcnity component u parallel to the lines S2 sad QR is zero; hence,
the perturbation potentials at potits P and Q are the same as at points S
end R, respectiml.y. H’ potits S and R ere fer u~stresm of the body
their potentials will be equal, so that the potentials at points 2 and Q
are egual. The perturbation yotential is thus uniform over the enttie
surface, end only perturbation velocities normal to the surface can ex.tst
at the surface.

.

Modification of basic concepts.- H the closed entrence regim is
nesr the body, as shown h figure l(b), the preceding discussion and
conclusions no longer apply.” ThuE, although u must sti13 be constant
over the entire free surface, it is no longer necessarily ZerOj that is,
the total velmity on the free surface is not necessarily egusl to the
velocity far upstz?eemin the closed portion of the tunnel. The two
velocities will, h fact, generally be une@ except in special cases
where eguqlity results from geomtiical symme-&y of the arrangement.
(For examyle, if a horseshoe vortex is located in the horizontal plane of
symmetry of the tunnel, the vahms of u at the tip end bottom of the
tunnel would be e~ected to be eguel and opposite” but since u must be
uniform over the surface, it follows that u = O.{ Ibthermon, the
velocities b the jet surface normal to u (that is, the circumferential
velocities) exe, h general, no longer zero (exce@ for axially symmetri-
cal flows, such as that produced by a source on the axis of a cticulem
tunnel) so that two surface points at the seinelongitudinal position,
as T’ emd Q’ (fig. l(b)) do not necessarily have tie same values of the
perturbation potential. Q

En_ce-lip ccmditim.- Consider, for sim@ici~, the symmetrical
case of figure l(b), h which the lifting element is on the horizontal
plane of symne~ of the tunnel. Stice u is zero on tie free boumiery,
the perturbation potential is ccmstant along the elements AB, CD,
m,. . ., althou@, as just Wcated, it is not necessarily & seine
for all these elements. This one boundary condition for tie open section -
that the potential be constant along each of these elements - does not
suffice, however, to deftie the problem uniguely. b fact, as will be
obvious from the suhsequent discussion of electrical analogies, the
potentials of these elements may be @te srbilmarily assigned without
violating this condition or the boundary condition on the closed portion
of the tunnel (that the norml derivative of the potential be zero at the
wall) ● b order to avoid this lack of unigueness, further conditions
must be sought. The most Important of these is that tie veloci~ be con-
ttiuous (la particular, not White) at the enlmance lip (potitsA, C,
E, . 0 .). This condition takes cognizance of the fact that, because of
viscosity, the physical flow leaves the lip smoothly, just as it leaves
the Wilhg edge of an ahfoil; the cotition is, in fact, strictly
snalogous to the Kutti-Joukowski condition for the trailing-edge of an
abfoil, which similsrly takes into account the basic viscosi@ effect
and provides uniqueness where otherwise en bfinl~ of solutions would exist.
It is recognized that, Just as the Kutti-Jou@wski condition does not
always suffice to pretict airfoil lift very
conditicm for the open tunnel may s~ly

,.—, — -.,-..-,- -— --- -—— ,. .. . .. . ... . . >,.. . .. .
.,’

;ccurately, the corresponding
oversimplify the entmance-lip

.,, .-V — -——’-
. . .. ——— —

. -. ,.
., +--: -.



/

NACA ~ NO. 1826 5

fl~j however, as with the airfoil, the condition is probably adeguate
where the flow is not slibject to an ex33essivepressure rise on ap30aching
the lip. References 4, 5, and 6 used the ccmlltion, end reference 6, in
additim, discussed it frm the physical viewpdnt and capered it with
the airfoil trailing-edge conddticm.

Concerning the downstream end of the @en section, the exit lip may
be considered to correspcmd to the lead3ng edge of en airfoil * no
effort Med he made in an idealized flow analysis to e13Mnate MfMte
values of u at this edge.

Jet contraction,or expansion.- It has already been pointed out that,
with a body b the jet, the velocity on the free stiace is not necessarily
egual to the veloci~ far upstieam in the closed portion. During the
course of the investigation, it was noted that solutims could be obtshed
showing a Mfference between these two velocities, even when there was no
body in the jet. Such a flow corresponds merely to a conb’action or
expansion of the jet, as jndicated h figure 2. !I!hus,in figure 2(a), the
velocity on the free surface is lower than the ups~am veloci~ and
rmains so even as it approaches the exit, in spite of the gradual contrac-
tion of the jet, because of the continuously bmemxbg stiace curvature.
The velocity suddenly ticreases at tie efit lip sad fjtnallyis established
at a value ~eater than that of the upstieam veloci~. With reasonable
ratios of entice to exit area, the f@ws of figure 2 may be readily
olrklned expemhnentmlly.

The signiXicence of this expanding or contracting flow is that it
represents a solution that satisfies all the boundaiy conditims previously
Mscwsed ti is nevertheless undesirable. b order to avoid such
solutions, a further condition must accordingly be recognized; namely,
that the velocities h the closed portims far upstresm end far downstream
of the open section be equal.

It may be objected that in the normal design of an open tid tunnel
the efit section is made larger them the entrance section. me p~ose
of the increased srea is to allow fm the reduced velocity toward the
surface of the jet resulting fran turbulent lndxinnwith the surrounding
still air. Tncreas~ the exit area by other than the correct amount wi12
result h the me of flow 3n&kated in figmes 2(a) or 2 (b), with a
corresponding velocity gradient along the center of the tunnel. h any
potential-flow solutian these viscous effects cannot be considered.

~.- When an airfoil is tested at a high lift coefficient h
an open tunnel, the downward deflection of tie jet may result in appreck
able spillage from the lower lip of the efity together with lack of ccmtact
of the main flow with the upper lip. (See fig. s(a).) The air lost by
spilkge is replaced by air (of, however, a lower toiXl pf%ssure)
entratied in the exit. Even without otherwise cormider~ the distortion
of the free surface, these flow characteristicsmight seem too much at
variance with the previously assmned characteristics to permit applicat-
ion of the theories being discussed. The calculations of X ~ for

.—.._—.—.._ _____________ _ — -= -—. --- —------——- .-. .— —-. ..-.. —.——.-. ..- —.-—,
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the two-dimensional open tmnel (that is, a rectangulm *1 with
closed sides but o~en toy sad botta) show, however, very little differ-
ence between the tunnel-induced—downwash tis-&ibutions for the tunnel
witi two efit lips and the tunnel with one exLt lip. That is, if
figure 3(a) is assumed to represent a ,two-dimensionalflow, the fact
that the upper lip of the efit is out of tie,flow field so that the
lower lip Wses over the entire burden of straightening the jet a~s not
greatly affect the huhzced downwash.

The effect of the e~t lip on ‘theflow phenomena is the least clear
of the various phases of the present problem. For open w5nd tunnels
havdng essentiaHy unflered efits, similar to that indicated h figure 3(a),
the suggestims of the preceMng @ragraph are probably adeguate. The
exit of the Iangley full-scale tuonel, however, has a large bell mouth,
and when airplanes ere being tested at high lift coefficients a downward
deflection of the air off the lower pert of the bell, roughly as indicatid
b figure 3(b), occurs. Whether the ~eviously suggested cacepts or,
Meed, any linear theory cen serve satisfactorily for this case seems
questionable.

surface pressures.- An interestingmethod of avoid@
spillage suggests itself in the case of the two-clhnensionalown tunnel:
H the space below the tunnel is inclosed, en e=esa ~essure wSU be
hilt up in this space, cmpred with the pressure in the s~ce above
the upper free surface, so that the flow will be pushed up sufficiently
to eklminate the spillage and emure precise contact of the lower free
surface with the lower exit lip. (See fig. 3(c).) ~ extent to which
a free two-rllmensionaljet can be defomned by a pressure difference
across its boundaries, or, stated differently, the extent to which a two-
dimensional free jet will deform h order to follow the only avaikble
path, is indicated by the smoke-flow photograph in figure 4.. The setup
consisted merely of a two-MmenEionel open jet with entmnce and exit
sections displaced vertically relative to each other, arranged between
transparent side walls, and provided with enclosed spaces above end below.

Details of interest h the figure, in addition to the jet
deformation, are:

(1)Sepamtion of the flow from the upper lip of the exit, because
of the lerge angle of entry. A small ben mouth at the etit lip might
have prevented such separation.

(2) The rough flow on the upper surface at the entrance, capared
with the smwth flow on the lower surface, reflects the fact that the
boundary layer approaching the enimance is stijected to a rising pressure
on the upper surface and a dropping pressure on U lower surface.

(3) ~ca~e of tmbflent ~~n at the free stiaces, a certain
amount of the & ti the c16sed chanibersabove @ below the jet is
entrained in the jet. An eguivalent guantitymust be released, or
skhmned off, at the exit ti order that the total guantity in each chamber

—— —--- = ,,, .——.— —.. —
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remah constit. This chulat~ rmchanism results in the a~perent
overflow at the two etit llps. The return of the sldmmed-off part to
the jet surface cem be seen at the bottom of the photograph.

Tunnel without a closed efit.- Some menticm is made in the sfise-
quent discussion of the Iqq@hetical oyen tunnel ha%lng a closed upstream
entrence region but no closed exit region, the open sectim thus extending
downstream to infinity. Calculations for such an azmngement (see part II)
are genera33y simpler then for the actual tunnel w3th the closed exit,
end give very nearly the same mswer, provides that the region of
interest is much closer to the entice then to the efit, as is usually
the case. For this arrangement, solutions with an arbitrary contmction
or expansion of tie jet cemnot exist, so that no effofi need be made to avoid
them. The solution for the general unsymmetrical caae, huwever, will
‘showthe jet veloci@ downstream at infini~ to le different from the
velcci~ upstream in the closed pert. The possibility that, h the two-
Mmensional case, different pressures might be assmed cm the two free
surfaces still.exists for this _&gpeof tumnel, but the resultfng jet will
have a constant curvature after leaving the neighborhood of the body.

An upstream condition for the llM?Mtely long11open tu&l and a
correction to the results of refemmce 8.- 3% many discussions of the
two-dhmnsionel open tmmnel, tie set of images titicatia b figure 5(a)
is used to satisfy the boun~ condition that u = O, end the resulting
flow shows an upflow h frent and an equal downflow in back, with no
bduced a~ h at the wing itself. Act~, however, if tiO jOt
issues fran a horizontal closed entrance - no matter how far upstream -
it will remati essentially horizon~ (because it is nmt subjected to
anY vertical force) until it reaches the wing. (See fig. 5(b).) ~
order to e~te the uadesired upstieam upwash, a uniform &ownWas
should therefore be added to the solution indicated in figure 5(a) .h
(compare reference 7, p. 304.) Addition of this downwash does not
affect the boundary conditions, stice u is still zero at the boundary.
This case is discussed quantitativelyin part II, where it is shown that
the enirance-lip condition automatically provides the correct answer.

Among the rectmgular whd tunnels for which corrections were
given h reference 8 is a type with closed sides but open top ani bottom.
The c~ctitea corrections for approximately sguare cross sections are
approxhately equal to those for the coqletdy closed tunnel, a suz=
prisimg result M view af the absence of any tap or bottom canstmaint.
The result is actually in error, es was discovered b en e~rimen%l
effort to verify it (reference9). Tn seeldng to explah the errors
the author of refermce 9 pointed out that the hage system used h
reference 8 shotid have tilwa an infinite row of vortices at inftcity,
and he showed how, by Mdng tito account this row of vortices, the
correct answer could be obtained. It could not be shown, however, that
the extent of this row of vortices is of a higher order of Mimi@ thsn
is their d@knce from the origti, as is necessary if thetr effect is to
be considered. The method of the precedhg pemgraph thus appears to be
much shpler and more rigorous h such cases than is a discussion of the
hage vortices at MM@. One simply observes that the 5mage bysti
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of reference 8 provides aa engle correcticm factor 5 of 0.25 for the
flow far uJlstreemof the w3ng, whereas b dhOtia be zero far upstream;
a correction of -0.25 should therefore be added to all values of 5
computed by this tmage systam fa points witldn the tuunel.

sUlmlaryof I)Ourldexyconditions.- A basic ~sical characteristic
of the flow is ~cmided by the conditim that the velocity be continuous
at the entrance lip, which also helps to provide uniqumess. The
velcci~ on the free surface is not necestily the veloci& far upstreem
in the closed portian; in fact, for the two-dimensional case, it is even
possible for the pressures cm the two tie surfaces to be different from
each other. Egcality of the velocities @ the u@meam and downstream ‘
closed portions has been recognized as an additicmal comlttion.
Neglecting the up~r portion of the closed etit my be desirable if the
flow is so depressed that it does not mdse contact with the upper pert
of the exit. Neglecting the ent- closed exit region.~ appreciably
simplify the woblem without titiOauO@ excessive haccumcy if the
region of interest is much closer to the entmance them to the efit.
~ general, adequate trea-t of the etit (fw lerge lift on the body
in the tunnel) sems very udlkely.

The discussion in the preceding secticms has ccmcerned mainly the
physical flow conditions, and relatively Mttle inte~etation in terms
of boundary conditions on the perturbation potent= has been given,
although such f- titerprwkticm would appear a trivial task. The
reason that this efinsion has not been niadeis that, in a number of
instances, as will appear subseguentl.y,sMght modifications of the basic
viewpoint, leading to scmewhat modified boundary conditions, ere desizable
for convenimce of solutian. Accordingly, the statements of the bowdary
conditions on the perturbation potentials will be given when the solutions
em tiscussed.

Suwmm ELECTRICALANxmGm

Velocity-PotentialAnalogies .

Basic concepts of the analogies.- b the analogies to be discwsed
in the present section (none of which have yet been constructed), the
perturbation veloci~ -potentialin the apace within the wtid tunnel is
considered analogous to the electrical potential h a dilute electrolyte
solution contained in a vessel of the same shape. An insulating material
such as Bakelite, the conductivity of which is negligible ccmpared with
that of the solution, provides a boundary where the normal potential

Mgradient ~ is zero; and a metal, the conductiti~ of which is practi-

cally ~Mte relative to that of the solution, serves as a constant-

potential boundary along which the longitudinal gradient ~~ is zero.

b such a setuy, current is analogous to velocity except for a
ti S@l (h the usufilconvention, current flow d~ a ~ol~ge

difference
gradient

——— -—- . -- ~—r
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whereas ah flows up a velociti-potential gmtient); in order to remove
this Mfficul@’, the sign convention for electiicdl.potentiel is reversed
in the folllow~ discussion.

For greater ckity of exposition, the two-dhmnsional analogies ere
treated b detail, the three-Mmensional analogies appe=ing as reasonably
obvious extentims or modifications. It wiIl be remetiered, however, that
any application will be found in three-&hnensionalproblems, inasmuch as
most of the two-dimensional problems can be solved emalytically.

A two- ddmmsional vortex may be represented by two long metal plates
separated by a ti insulator. (See fig. 6(a).) A flow corresponding
to a vortex located at the edge of the plates is set up by applying a
clifference of potential across the plates. If the perturbation flow
that results frmn the presence of the vortex in the tunnel has a hori-
zontal velocity ccmgmnent, this represenbtion is no longer adeguate
because it re@es the Potential to be uniform along each @ate. Rigor
in this case would re@e tiat the plates be composed of a number of
sepsrate sections, with each pair separately activated. (See fig. 6(b).)
~ this way it is possible to provide a potential differe~e between
upper end lower surfaces that is eve-ere egual to the desired circula-
tion, without reguiring that the potential be uciform along the entire
upper surface or lower surface. A horizontal.VS1OCity capcment nozz?mlll
occurs only when the Hfting vortex is asymmetmicdly located in the
tunnel. For simp~ication, 0m% the simpler representation of figure 6(a)
is used in the ~ ske~hes 0

The elament of lift in three-dhensicmal flow is the horseshoe
vortex of zero span, which ip % same as a semi-~inite line of doublets.
It my be represented by a pair of long nsrrow MM stiips sepsrated by
an hmilator. (See fig. 6(c).) Ae in the two-&hnenEfonal analo~, if
the lifting elemmt is asymmetrically located in the field the stiips -
must be made up of short pieces, with each pair seysratel.yactivated.
The horseshoe vortex of fMte span is represented as ta figure 6(d),
provided there are no appreciable perturbation velocities in its plsneo

Evaluation of titerference velocities.- The vertical veloci~
component in the tunnel corresponds to the vertical.voltage gradient in
the electrolyte, which cea be detemninexlby measuring the voltage cliffer-
ence between a pair oi short wire electrodes mounted one above the other
a fixes distance apex-t. The tunnel hterfemnce at any point is found by
measurhg this voltage difference (relative to that across the two plates
representing the vortex) first h the simulated tunnel and then in a
lerge tank for which the boundery interfenmce is either negligible or
so small -t it can be adeguately cagmted by s~le methods. Stice
the t@oretical flow field for the second case is lmown, tie ratio of
these two gradients, togetier with the distance fram the pair of wires
to the lifting vortex, should suffice to evaluate the boundery interfer-
encee. The distance between the pair of w3res need not be measured
because o~ the ‘ratio of the gradients is regmlred. Wmilarly, the
exact design ma dimensions of the simulatdl lifting vortex are of no

—.. . __. —_,. _ .— -—— — —..—— — ——
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significance, provided the gradients exe ibtima at reasmable
distances from it. b geneml, bounlmy titirference at the vortex itself
cannot be found d3rectl.yby this method, but my he detemined by
interpoktion between or extrapolation frm neighboring points.

Two-dlmmsional c108ed-open tunnel.- I?orsimplMication of the
nomenclature, the open tunnel with closed u@tream region but without a
closed efit is designated the closed-open tunnel. The open tunnel with
closed upstieam end downstream regims is desi~ted the closed-open-
closed tmmnel.

l?igure7(a) i13mstrates the se~p for a two-dimensioned.closed-own
tunnel with a vortex on its center Mne. Shaded lines indicate

ao = O, and heavy unshaded Maes inticateinmlat~ boundaries, where
x

metal boundaries cm which Q is constant. The ups-&eam c108ed portion
should be so long that the potential is essentially uniform at its
upstream end; the length tid.icatedcm the figure 8h0tia suffice. ‘I!he
open regicm 8h0tia similarly be so long that the vertical flow between
the vortex strips end the boundary stiips no longer chamges with distance
downsln’cam;agati, the length hdicated on the figure should suffice.
lhm the condition of velocity continti~ at the entice lips and the

f act that aois zero along tie free boundaries, it follows that ~ ‘
x

must be zero at the edges of the two closed boundaries. The potentials
on the two free boundaries must, therefore, be adjusbd until the differ-
ence between the potential of each and the potentidl of a thin feeler
electrode just uystream of its edge is zero. For the symmetrical candi-
tion shown, the single variable voltage source Indicated will provide

zero ~ at both edges simultaneously.

Hgure 7(b) illustrates the setup for the two-dimensional closed- .
open tunnel with the vortex In an off-center position. A single ~iable
voltage source across the two f=e boundaries is now no longer capable
of simultaneously satis~~ the continui~ ccmtition at both edges, so
that an add.ltimal variable voltage souzWe @ an upstmeam electrode
are required. The current in the closed part of tie tunnel flowing into
this upstream electide corresponds to an upsimeam perturbatim velocity.
This upstream perturbation veloci@ constitutes the previously mentioned
dHference between tie veloci~ far upstream in the closed part end the
veloci~ on tie free surface. The concept here is slightly at verisnce
with previous discussion, which considered a perturbation velocity along
the free surface, with the far upstream veloci~ appear- as the
undisturbed velocity .U. As the emalo~ is set up, however, no perlnm
bation veloci~ may app= al- the free surfaces because they are at
constent Potididj hence, the total veloci@ on the free surfaces must ,
be cowidered as the unMsturbed velocim U ad any difference between
this veloci~ @ the velocity far ups-am appears as en upstream
perturbation veloci~. As appears ti part H, tiis viewpoint is slso
found convenient ti the analytical solution of these problems.

.

—.—.-: — .- ~.:..,-~.?.—-.—-- ..— — .-. ____.,
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Two-Mmensional closed-own-closed tunnel.- The setup for the two-
dhensional closed-o~en-closed tunnel with a vortex on the center line
(fig. 8(a)) is en obvious modification of the corresponding setup for
the closed-o~en tunnel. The same would be true for the off-center vortex
except for the necessity of satisfying the condition that the velocities
in the upstream end downstremi closed regions be egual. Thw, me se~p
of figure 8(b) provides en upstieam perturbation veloci~ but no down-
stream perturbaticm velocity, end camnot, therefore, solve the problem
completdy. k additioti flow, foundby the setup of figure 8(c) must
be included. An electiode is here located at both the upstream anii
downstream en&s, =d the potentials relative to the free boundary are so
adjusted that the entrance-lip condition is satisfied. It is apparent
that in order to satisfy this condition the downstieem current flow will
be much greater than the upstreem curz%nt flow; that is, the downstream
perturbation veloci~ for a contracting or expmding jet is much greater
than the upstmeem perturbatim velocity. Because of this difference, a
suitable amount of the flow of figure 8(c) may be added to that of
figure 8(b) to produce equal upstream end downstieem perturbation
velocities.

.

Bismbcement of the free surfaces.- The current density normal to
the surface of a metal plate representing a free surface is proportional
to M

F and corresponds to the local vertical perturbation veloci~.

The t&Kl vertical displacement at a point on the free surface is then

J

N dx integrated frcm the entice lip to the point. Mgiven by
ay

particular, the integral alcmg the entire lower free surface of a closed-
open-closed tunnel represents the displacement at the etit lip end it
mey be measured by means of en ameter in the line that goes to the
lower metal plate.

H the pressure on the lower free surface cm adjust itwekf so
that the displacement at the downstream end is zero, the perturbation
velocity at the lower swface will be clifferent i%om that at the upper
surface. H the perturbation veloci~ on the upper surface is @ken as
zero, that on the lower surface will be negative, so that the potentfal
on the lower surface must drop uniformly frcm entrance to etit. Such a
variation could be accompMshed if the lower surface were represented by
a nuniberof short metal ships instead of a shgle plate. “

Three-Mmensional closed-open and closed-open-closed tunnels.- The
analogies for the three-Mmensional tunneh sm obvious modifications of
those for the two-dimensimal tunuels. The free bouadary may not be
simulated by a single metal cylinder because, as was preciously noted,
different elements of the free boundmy do not have the same potential,
although the potential is constant along each element. The free boundary
must thus be simulated by a number of longitudinal metal strips,
insulated from each otier, with a feeler electiode immediately in front
of each. When the lifting element 13es in the horizontal plane of

—.—----- —.. —-— —————.— ——. _~,
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condition may be satisfied without ~ additional
element is not h the horizonw plane of

symmetry, an upstmmm electrode will be needed, with the potential of
each stiip adjusted rehtive to this electiode. For the ~~ical
closed-open-closed emd.ogy, the requirement tit UPS*SJ.U @ dm~e~
velocities be emxal necessitates further messurementi with a setup
COlX133ElpOIl~t; that of figme 8 (C)●

of a
of a

Acceleration-PotentialAnalogies

Basic concepts of the analogies.- The pressme has
potential - aesi~tea acceleration potantial - h

the properties
a field ccqsisthg

‘&nal.lperturbation flow superposed on a uniform stream. If the
pressure ti-thB uniMsturbed stmeam is tsken m zero; ~en * pe~bation
velocities are related to the pressure by the following ecjuations: .

t

where

P

t

P

Since,

-v=

w=

at = ax

densi&

time

pressure

by the first e~tion, u is proportional to p, it is s~pl=

mere~ to consider the perturbation veloci@ u itself as the potential,
with v end w given by the following eguations:

J

=au
-v=

5.--m

x au
w=

!‘mx&

‘..

-— –.,. -~-, ,.- - —
-, .’.” ,. .7- ,- .,.,’ --.-,,
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.

The necessi~ of perfomdng an integration in order to d.eterdne v or w
is a basic Usadvantage of the acceleration-potentialsnalo~ compx’ed
with the veloci@po*tial- analogy h which v and w are measurable
directly.

Ih the enalogies to be discussed in the present section, the pertur-
bation veloci@ u is comidered analogous to the electrical yotential
in a &Uute electrolyte solution. A metal serves as a boundary alomg
which u is constant, and tie local titmsity of current flowing into

“ an insulator serves as a bouudery where ~“
‘t ‘i-s ‘% an

is zero. The

Ilfthg element in either two or three Umen@ms is represen~d by a
pair of short metal plates sepratid by an tititir; when the upper
pk”te is mati_Mned at a higher potential them the lower ylate, the
enangment represents a thin airfoil.with suction (large u) on its
u~er surface and pressure (smll or negative u) on its lowr surface.
The current at each of tka two @ates should be the ssme in order that
the slope of tie airfoil surface (proportionalto v) be the seineon
boti upper end lower sides. Ih order always to satisfy this cotition
the vol~ source activating the lifting element should not be tapped
to any other electrode in the field.

Two-d3menBional closed-open tunnel.- !50 setup for the two-
Mmensionel closed-own tunnel with the lifting element on the center
Line is shown in fig& 9(a). The walls of th; ups= closed region

are represented by insulators, which establish that Y = O at evem

J’‘auti WY

point; hence, the contiti~ ~t v = -~ ~
= O at every point oh

the closed bounilsmyis satisfied. The two free boundaries ere repre-
senkd by ~talj and electric- c~ct~ ti~y aS sh~~ satifiies
the further condition that they have the same potentisll(the same u).
The flow of current tito the lower bounibry then eguds the flow of
current out of the upper bom~, so Wt tie ~t~~ d~~~
vslm of v will be the ssme on both upper and lower boundaries, as is
desired. b fact, for the symmetrical case illus-ted, the value -
of v will be the same at &U_ @rs of opposite points on the two free
boundaries; so the boundaries will be everywhere ~el. No special
attention need be paid to the entrsnce lips - the enln%mce lip condi-
tion is automatically satisfied since the potential u is continuous
at these points (although the potential gradients at these potits are
White) ●

For the off-center position of the Hting e&ment (fig. 9(b)) no
modification of the circuits is needed. The difference between the
potentiel in the upstresm closed region and the potential of the free
boundaries, which is the u@meam perturbatim velociti u, is ~=ured
with tie aid of the probe 2.. As in the symmetrical case, the Ulttite
downslmeam value of v will ~e the same for both the upper and W
lower boundaries; however, it is no longer true that the two boundaries

wiIl be everywhere -cl, end the ultimate width of the’jet wilU be
different from the width of the closed pmt.

_-. ..— —— .—. . . ..— — -- — —---- -.—- -—
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TWO-dimensional closed-open-closed tunnel.- The value of v at the
downstieem end of the free IIoundsryis given by the total flow of curent
into the metal ylate and, h general, is not zero. At the lip of the
closed exit, however, v must be suddenly reduced h zero in order for
the flow to follow the solid boundary; hence, a short electiode must be
added at the efit li}, and u much current must be forced out of it as
flows into the long electrode that represents the open boundery; that is,

.
the inte~l of ‘u dx along the free boundary must be csnceled at the

F
etit li~. The setup (fig. 10(a)) therefore shows a voltage source IxI
eupply this current and meem for measuring and equalizhg the current
flow into adjacent electrodes. If these additional short electrodes are
omitted, the Eetup will correspond to a tunnel the exit section of which
has been alined with tie deflected jet (fig. 10(b)) because the conditicm

that $ = O on the closed efit bomdary would merely pemlt T to

remain at the value it had at the end of the free houndery.

For the off-center po~ition of the lifting surface, a shtller setup
iB used and, as before, probes in the regions fa upstieam and far down-
stream ere used to detezmilnetie potential u in these regions relative
to the yotential of the free boundary. Stice these ~otentiala far ~-
stream and far downstream will not be equal, an additional perturbatim
field must le provided such that the sum of the two fields will have the
seam potential h the two regions. This additioael perturbation field,
which corres~onds to a contraction or expansion of the jet, is provided
by the setuy showm in figure 1O(C). It is clear frcinthis figure that
the downstream perturbation potential is much greater than the ups@eam
perturbation pbential; this result corresycmds to that indicated in the
velocity-potential analo~.

The condition h which the pressure on the lower free surface is
higher then that on the upper free surface is easily represented by
applying a voltage difference between the two surfaces. (See fig. 10(d).)
The corresponding displacement of the lower surface, however, is not so

readily obtained. The vertical velocity at eveg point iE ~~ dx, so

J

J &
that the displacement at each point is

$
dx dx. Jm order to accom-

plish this integration L“
ay

must be detemained at points akmg the

bountiy, perhaps by breaking the long plate IQto a nunber of short
pieces and detemin~ the current flowing titc each.

Three-&lmmsional closed-open and closed-own-closed tunnels.- The

analogies for the three-Umens ional tunnels are a&n obvious modlfica-
tions of those-for the two-dimensional tunnels. For the closed-open
ermlo~, the free loundery MY be represented by a single cylinder of
metal (fig. n(a) ). For the closed-ops~-closed analogy, the free boundary
must be represented by a number of se~te strips (fig. Ii(b)) in order
that the total current him each strip may be measured and en equal

-a

w —.

—
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current forced out of the short stiip imed.iately l)ehd it. Conb-action
or e-ion of the jet is represented as ti the two-dhmnsional case;
but the qetup that would.correspond to difYerent pressures along differ-
ent strips seems to have no practical significance in the three-
MmOnsional case.

Some form of this acceleration-potentialsnalogy is Wobably the
most convenient for solving problti similar to that of the helicopter in
the Iangley fill-scale tunnel. Sh@..y neglecting the exit, as with a
closed-opa tunnel, permits the free stiace to be represented by a
single sheet of metal end eliminates any measuraazmts of current flow to
or frm the surface. Inpoved accuracy should be attainable byegutting
the sheet into two parts witi two short stiiys at the resr.
fig. n(c).) The need for mamy stiips seem unlikely, at least in view
of the previously mentioned uncertain definition of the physical flow
h the region of the efit. .

Correspondencebetween velocity-potmntial and accele~tion-potentiel
saalogles.- As has already been biicated, the accelemticm potentisl is
identical.with the x-ccmgmnmt of the perturbation veloci~ and is hence
merely the x-derivative of the ~rturbation-veloci~ yotential. It iS
of interest to pofnt out tie relakd fact that the acceleration Totential
~ogies sre, in a sense, the x-derivatives of the veloci@-Potential
analogies. For enmple (see fig. 12),

(1) I?or the velocity-potentisl analogy, an m~tiQ long double
I

layer represented a 33ft@ element located at its forward edge. The
Mff erence between two such double layers, of which one is shifted
sMghtly relative to the other, is numely the short double layer that
was used h the acceleration-potential analo~.

(2)”For the velocity-potential snalo~, the free boundary consistid
of constant-yotential strips cm which the potentials were so adjusted
that the gradient was zero at the leading edge ● H each strip is now
Shifba m stitictOd, thOrO remabs a long strip, with a short 8W2
at the front eM back. Since, h the velwitg-potential analogy, the
grmtlent was”zero at the en-ce lip, tie Aort striP at tie fr~t w
be neglected. The rematider corresponds to the amangemnt used h the
acceleration-potentialenalo~, and the fact that the total current after
the s~traction must be zero corresponds to the fact that the total
current out of tie short s~ip must be made egusl to the total cument .
into the long stmip.

(3) When the lifting element was off-center, the veloci_&potential
analogies required electrodes upstream and downwbxmm, with unifom
current flow along the upstream and downstream closed regions. That the
s@~cticm eliminates these current flows corresponds to the fact that
no upstream or downs-am electrodes ere used b the acceleration-
potential snalogies.

. . . . .. .. ..—. . ...=. —... —.—. —.-~ —-—— . ——. —._. _ — .—. — -. ——— ——...— .——. .
./ ,-, ..,. .
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Technical Difficulties

It should be pointed out that the analogies here described may be
rather unwieldy, e~rimental.ly ● .X!lenfor the stqlest @es of analogies,
the literatwe tidlcates considez%ble mcertain~ as to the most satis-
factory electmoly-k end electrode materials, and appreciable difficulty
h balancing capacitances (elternat@ current is generalJy used in
analogies, in order to ~ze polarization at the electrodes). b the
present enalogies, the need for sepsrate current sources that are exactly
h @ase end the large ca~citances that will certdnly characterize the
vortex - tie oyen-boundary representations should.greatly canplicate
the technigue. Yerhaps the use of direct current instead of alternating
current, with nonpoMrizing elec%rciks (as plathized platinum), would
be a more practical approach in this respect. Simultaneously satisfyhg
the entmnce-lip conditicm at a number of yotits around the inlet (or
satisfying the corresponMng exit ccmtition for the acceleration-
potential analo@es) my also turn out to be very difficult,

The most significant potits of the yreceMng discussim of open
wtnd tunnels and their electrical analogies sre as follows:

1. Conttiui@ of veloci~ at the lip of the en-ce cone is a
basic characteristic of the flow ti an open ad tunnel.

2. EguaM~ of the velocities h the upstream and downstream closed
regions is a further conMtion on the tumnel flow if extraneous longi-
tudinal pressure gradients ere to be avoided.

3. The veloci~ on the free surface need not be the same as the
velocity h the closed upstresm region. b general, the two velocities
em the same only when the liftdng element lies in the plane of
symme~ of the tunnel.

a

k. For the two-~iOmiL own tunnel the velocities cm -thetwo
free surfaces need not be equel. H the space below the lower free
surface is closed off, the pressure on the lower free surface will adjust
itselX so that the displacement at the exit lip is zero.

5. Ccmsidezable uncertain~ exists with regard to conditions at the
e~t or the mathematical egulvalents of these ctitions. Correspondingly,
certain cbmpranises h camplyhg with the idealized downstream conditions
may be justified in a determination of boundezy interference.

6. h sny analysis that ne~ects the closed m*e smi exit regions,
_&e condition of zero ups’ia?eamMuted flow must be retained.

—.— ———-. — ~——, —.—...,, . -,”-. . .. ,,, .
‘.:. .-
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.

7. Electrical snalogies of either the veloci&potential or the
acceleration-potential~ @ be devised to correspond to most of the
problems tiscussed.

8. k electiicd analogies that represent veloci~ potential by
electrical.potential, the cmdition of cont@i_& at the entisnce Up
appears trotilesome, especially for three-dimmsional *ls j however,
the efit conditions are easily represented.

9. k electrical snalogies that represent acceleration potential
by electrical.potential, the entrance-liy condition is automatically
satisfied, but fulfillment of etit conditions is trotilescme. Rough
approximation of the exit conditions ~, however, be adequate for _
purposes.

10. Accelemtion-potential enalogies are experimen~ simpler
than veloci~-potential enalogies.

II- TWO- DIMENSIONAL TUNNELS

b part II, boundary-induced velocities in two-@nensional open
tunnels sxw derived with special reference to the effects of the closed
entrance end exit regions. The cases treatad are:

(1) Tunuel with a closed entrance (upstream)region but without a
closed exit region

(2) Tunnel with a closed entice regim but with only one exit
lip (correspond@ to a cmmiition in which the downward deflection of
the flow is so lerge that the Slow makes contict only witi”tie lower
exit lip)

(3) -el with clOsea entice snd efit regions

(4) * as case 3, but tith different pressures on the two free
surfaces

Numerical results are given for all

SYMBOLS

cases.

MD DIMENSIONS

Each tmnel is idealized as a strip of unifozm height h, having a
stream velocim V, and contahinn a point vortex of strength r. For
simplification of the present development, lengths ~a velocities will

be made nondimensional by titi~ by h @ V, respectively, W t~
vortex strength will be made nondimensioml by tividlng by hV.

a

0

-. —.. .-— — . .----- —.. .-— --- .- —- —-- --- ... —- --—~ -. .-— ————
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the solutions will be develo~d for a vortex of

inatuunel

synibolsthe lengths in
canplex velocities are

‘A,B, C, M, N

r

ra

!&cl)

9&)

a

‘1

W?2

‘3

z

G

of tit heightj ad h the fdllc)~

the complex @anes are in terms of Ii,
in terms of -?:

tunnel height

tunnel velocilq

complex verialil.e of physical plene (~

location of vortex h ~-ylane

coqlex variable of _&ansformed plane

location of vortex h z-plane

camplex veloci~

com@ex veloci~

real Constmlts

vortex stiength,

in

in

physical plane (u

tmansfO~a ptie

+ iq)

(x + iy)

- iv)

(u - iv)

(h)nodlmensional vortex strength r
T

tiduced complex veloci@ at ~ when vortex is at ~ ~

hduced complex veloci~ at cl

abscissa of exit lip h tzansf~d space

a complex veloci~ in the fozm of en elJJptic titegral
of the fhst Had

a complex veloci~ ti the form of qn elliptic integral of
the second kind

a complex veloci~

variable of titegration

function def@d by equathn (2)

I
.——. . .

,,”. . . . . . . —,
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K, K’

E, Et

F, F!

R.P.

IoP.

c

cl

6

%

Subscript

i

complete ellllptictitegrals of @e first kind, with
modulus l/a

when not folhwed by parenthesis, completa elliytic
integrals of the seccrilldnd, with mdulw l/aj
w5iihu~~er limit tidicateriin parentheses,
ticomplete elliptic integials of the
second kind, with modulus l/a

inccmqlete elliptic integrals of the first tia, with
modulus l/a, and with upper -t tidicatad h
parentheses

real pt

a- m

-Ofi cho~

aizfoil Wt coefficient

turmel-induced angle, radizms

horizontal perturbation velocim at free boundary .

induces

E!mmARY

The two-dimensional tumnels

.

COIIOITIOMS

discussed me considered to have their
fixed and free boundaries =’el to the real -s, with the main tunnel
flow fra left to right. The physical ylane (in which lengths and
velocities have been made nonWnensional as just described) will be
designated the {--plane,with the complex perturbation veloci~ u - iv,

or q(~)y ~~Ject to tie f0~- CO~ti~:

(1) m each

(2) On each

(3) At each

fixed (or closed) boundary, I.P.q(~) s -v = O

free (or open) boundary, R.P.q(~) - u = O or a c.o~tit

lip of the closed en+a’antesection, 9(C) is continucw

..- —-.——— —— —.-— ———- —._,._ .—. — ___ ,---- . . . . .. —-
,.. .
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0

cAsEJ - cmsm-om T!uNNEG

Total.perturbation velcci~. - I& the tmnsfomation
.

z =eflc (1)

the tuanel fi the <-ylane, represented by an Whitely long strip of
unit height, is *fO~a to the ~per half of the z-plane. me
correspondencebetween points is shown h figure 13.

The colqlex veloci~ (rather than the more usual ccmplex potential)
is considered to be retained h the transformation,and the problem is
thus to ftid a function Q(z), where

u- iv = Q(z) = q(~)

such tit

(1) On the closed sections of the bomdary, that is, fa z real
sad- IZl<1,

I.Y.Q(z)

(2) On the open sections of the

- ]Zl>1>

R.P.Q(z)

(3) I?or z = *1,

Q(z) =

(4) Q(z) is ftite at inf5nity

Consider the cauplex velmitg G(z)
and its reflectim at il:

= o

boundary, that is, for z real

= o

o“

corresponding

<

1 )G(z) =A --—
z- Zlz-zl

to a vortex at Z1

(2)

This function, which is of order l/z2
v-,

at 3nfini@, satisfies con
tions (1) and (4) but not (2) and (3). Functions ,oftie form

I
z@-z *,... satis~ c-onaitions(1), (2), and (3). At minity,

F - is of orfir z2j ~erefore,isoforderzandzl

— .-. — ,.–. ,-. .— - . - —.——,- .. ,’- ,. .:. . . .
,., . . ...-..,--
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either of the products G ~, Gzvl - Z2, or a Wear conibination
of the two satisfies the four conditions snd has a 1018 of the first
order at
is of the

where A

Zlo These facts suggest that the desired velocity function
form t

( 1 )Q(z)= --— (A+ Bz) (~
z- Zl” z - Z1

end B are as yet undetamined real constants.

(3)

The wow of A md B are @ be ~temd such -t the pole
at Z1 represents a vortex of strength -I’1 in the t-@ane. Thus

where the titegml is taken about the point Z1. By Cauchyts integral
fOrmula

rr =
=2

-2 (A + Bzl)
Z1

(4)

.

The values of r’ m Z1 we known, so that this ccmplex eguation
can be solved for the two real constants A and B. Slibstitutllng
these values h egmtion (3) wiH thus give the desired complex velocity
function.

Tunnel-interferencevelocity.- The tucnel-interferencevelocity is—— -
defhed as the difference between the total perturbaticm veloci@ q(~)
due to the presence of the-vortex h the tunnel and the veloci@ due to
a vortex in an unbounded mecliun. That is, the tunnel-interference
velocity qi(gj!.1)b

(

1 1

J
9i(!0gl) = ~ RI - ~ (A + Bz)

H the vortex is on the axis of the tunnel,

$=7+ &

then fran 0guation (1), zl = iyl, @ emtion (4) gi~s

(5)

+;,

t
.
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22 IWICATN No. 1826

A=O
1

If the point of
whence z = iy),

evaluation is.also on the axis (that is, ~ = g + ~,

then

.

Thus, if the vortex is on tie
points on the axis has only a

ads, the interference veloci~ at W
vertical compment.

The titerference veloci~ at the vortex itself is the Idmit of
expression (5) as z approaches 21. The temn con-&~ng z - ~1
offers no clifficulties and its limit is readily evaluated:

where the last equall~ follows frm equation (4). The remainder of

equation (5), sf@r

[’

~(A+Bz)l-z2+

z- 21

3-C(c - Q) is reylaced by log :, is

1(A+ Bz)~l-log : + ;(2 - ZJ
r’ =i”

2 log :
(
z-

)
z—21 % 21

(6)
. .

(7)

‘I’hisexpression is of the form ~ forz= 21. Differentiatingnumerator

snd den~tor, accord@ to L l~ospi~ 1s rule still leaves both e@
to zero at z = Z1 (that the derivative of the denominator is zero
atz= Z1 is obtious; that the derivative of the nmerator is -o
zero at z = 21 csn be verified with the aid of equaticm (4)). A second
differentiationyields the following expressicm for the limit

as z approaches Z1:

6

—.. . —..Z—- -- ---
.’”.‘- - -,
.“ .,



NACAm NO.M26 23

l?hisfraction csn be greatly simplified by use of equation (4), ~ the.
result, added to the ~eviously derived limit, gives the desiz’edcorrec-
tion at the vortex:

For the speciel case in which the vortex
this expression red~es to tie follomlng
fran equation (6)):

is on the *1 axis (z
fomn (alter s@stituting

() ir’ Y12qi~$ =-——
2 I+ylz

(8) .

m),
;or 3

(9)

Upstream perturbation veloci~.- H tie vortex is not on the tunnel

ads, A will not be zero (compsre equation (6)). The *1 interfe~
ence veloci@ fsr upstreem in the closed pert of the tmnel is fouud by
puttq ~ = -m ~a z = O in equation (7), which then reduces to

which 1s real, For this unsymmetrical case, therefwe, a f=te loWi-
tudinal perturbation veloci@ is fomi far upstream in the closed pert.
AS was yointed out in pert I, such results appear because the problem
was set up so that the longitudinal perturbation veloci@ on the oyen
bound.eryis zero. U? the veloci~ far upstresm in the closed part is
to be taken as the base, the result mesns merely th~ the longitudinal

ml ~~
velocity on tie own bomdary exceeds this base velocim by —

IZ,k?
that there is a correspmllng difference h pressure between ‘ti”&closed
pm% and the space surrounding the jet.

---- _—. - .. . . . . . —m . . . . . . . .-— — ——. .-— — . -,—— ———
.——. —— -— —

. .
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Limitihg case of completely open tunnel.- With incre~ing fis~ce

of the vortex fram the closed en~ce (that is, with increas* 71),

expression (9) approaches - g. As was pointed out in part I, the

image system normally used to ~atisfy the boundary condition on en
inf~tely long, open, two-@nEional tunnel produces no induced flow
at the vortex itself, and ody aftar introduction of the ad~tional
condition that the upstream flow be horizmxtal is this value of - —

_J~1

2
for the induced-flow correction obtained. In the present development,
however, it is seen that the condition of continuity at the entrance
lips automatically takes cs2w of this conditim on the upstreem flow
direction, even when the entrance and the vortex are infinitely far
apsrt.

No further discussion
here inasmuch as this case
-s. (See reference 6,

,

of the campletily open tunnel will.be given
has been adequately treated by the method of
p. 3a20)

CASE 2 -TOMNIL mom F12mlDIXll?~

Perturbation velociiq.- As lefore, the *f omnation z = em~
tz’snsfozmsthe tunnel, considered as an Mini* s~p of tit height,
into the upper half of the z-plane. The correspondencebetween potits
is shown in figure 14. The conditims cm the ccmplex velmi@ Q(z) are:

(1) On the real tis, 1.2.Q(z) = O for -1 <z <1 and for z >a

(2) On the real axis, R.P.Q(z) =0 for z<-1 and for l<z<a

(3) For z = *1, Q(z) = O

(4) Q(z) is finite everywhere h the upper half-plane except
at z =a andat z=z1. As noted in pert I, Q(z) till be infinite
atz=a

The function G(z), given ~ eguation (2), will.again be used as a
factor that is real along the entire real sxis and has the desired type

of shguleri~ at Z1. The functions /G.~c-

from pure real to pure 3m@nary as z passes through *1 or through a,
and, furthermore, are zero at z = *1 end infinite at z = a. At

infinity they are of order z1/2 and Z3EJ respectively. Therefore,

r
as before, a klneer combination of G(z ~ dand G(z) ~

-z

.—— ,, ..-. —- .—,, .,- ——-. ...’.. .,.
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satisfies the preceding conditions and has a pole of the first order
at Z1. Q(z) is therefore of the form:

(10)

The real.constants
before, which gives

A @ B are detezmdned by

,’=--

the sam fSmdition as

(n)

Tunnel-interference V81OCi~.- The interference veloci@ ~ (~,cl)
is the difference between the perturbation veloci~ and the veloci~ due
to a vortex located at the same yoint in an unbounded medium:

(12)
.

This expression does not simplify appreciably if the vortex is located
on the tis, and the interference velcxi~ at a point on tie ads due
to a vortex on the axis is not nomnal to the tis.

The interference veloci~ at the vortix itself is the limit of
expression (12) as z ap~roaches 21. Proceeding as in the precedhg
case gives:

(13)

It may be shown with the aid of eguation (1.1)that this eguation reduces
to fiat for the closed-open tunnel as a goes to inf~ty.

cAsE3- cLmEIFoHIT?-cImEDTmmL

Perturbation velcci~.- The -&ansfomation z = ~~ -f olmlsthe
tunnel s~ace into the upper half of the z-plane with correspondence
between points as indicated in figure 15. The boundary conditi~ ~
the complex veloci~ Q(z) ere:

.

— ..— —. ..-— -.-—- .- ——--- y—-————— .—— —-—— _ .._ ._ _. ___ —.-—. —.. . —
,., ““--— ,.,..-,,,
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(1) on the real axis, I.P.Q(z) = O for IZI <1 and for ZI >a

(2) On the real tis, R.T.Q(z) = O for l<lzl<a

(3) For z = *1, Q(z) = O

(4) Q(z) is fhite everywhere h the ~er half-@ane except
ak z =* andat z=21

(5) Q(O) = Q(m), (w eguation correspontUng to the condition
noted h part I that the perturbation velocities h the uystream and
downsbeam closed regions be the same) .

The function G(z) gi-n by equation (2) is again used as a factor

of Q(z).
‘e fmtio”fi> d->* ‘2&% ‘atisfy

conditicms (1), (2), and (3), and are of orders 1, z, and Z2 at infinity,
respectively. By the same reasoning as before,

(Q(z) =iz~zl -

. The condition that the yole
vortex of stiengiih r’ is:

1

J i=

~ (A + Bz + CZ2) ;2- ‘:2 (14)
z-

of the fizwt order at Z1 represents a

{

2(A + Bzl + CZ12) 1 - Z12rl=-

Z1 . a2 - Z12
(15)

Condition (5)
for z eqti

is
to

satisfied by e&uathg the two fozms of eguatioa (14)
zero and egual to infinity. T!2nm

Q(0) =

Mm Q(z) =
Z-uo

‘(-:+ti

-2yl
,F(A + Bz + CZ2) 12- z2

‘+@ (z - Zl)(z - Zl) a - Z2

-2ylc

—, —-- .,. ., .-,. . ,. .. .... --—- --,-.-’...,,- .,-,’ ‘.,’..
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whence, by condition (5)

’271 A
—– = -2ylc

II~12a

or

The canplex eguation
evaluating the three

(15)
real

Ac— .=
2

(16)
s. Z1

and the red eauaticm (16) suffice for
constants A, B, and C k eguation (14).

Tunnel-interference velociti.- The tunnel intaference velocity ie

(9i(Lh) = i *1

If -thevortex is ti
give6

Comparing this last
following form for

shows that for this

1 J r=1-F-— (A + BZ + CZ2) ~ + & (17)
z -“z

the tunnel axis, that is, if Z1 = iyl, eguation (15)

eguation with eguation (16), which reduces to the

z].= iyl

symmetrical case

A=C=O

— . ...— . . . . ~.___ ___ ___ ._ . . ... .
—--. ——-. ——— -,=. — ..-— —.__— .—.—_._ .. . .:. - .
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stice, as is cleer fra figure 15, a + 1. The interference veloci@ at
a point on the axis (z = iy) dus to a vortex on the axis if3thus

which is normal to the tie.

The titerference
expression (17) as z

veloci~ at the vortex itself is the Umit of
approaches Z1. Proceeding as before gives

(u)o

(20)

I?orthe case in which the vortex is cm the axis (Z1 = iy~ the
normal velocity at the free boundary (z = x, where 1 < x < a)is given
by

or

(21)

cAsE4- CmsED-ol?EN-~ ToImELWITHUNEQUAL

Boundery conditions.- As indicated in m I, the two-dimensional
closed-open-closed tunnel may develoy unegual pressures on the two free
surfaces if a closed space exists below the lower free surface. within
the Umits of the present linear theory, this pressure difference corre-
spon.dEto s~erpos~ on the flow discussed h the preceMng section an
additional perturbatim velocity field Q(z) that

(1) Has no singularities within the tunnel

(2) Satisfies the condition of continui~ at the Net lip3

.- ;.-. ~ -- -———.—..-, . ., .,. . .,.
:. .-,- ,.,
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(3) ~ a horiz~~ Cqmmt em to, say, +1 on the u~er free
bound.eryand -1 on the lower free boundary

(4) Has no vertical cczqonent on the.closed boundaries

(5) m zero at imf3ni@ mstmam end Mwns-beam

Rewritten as conditions on the complex v-eloci@ Q(z) in the z-@ane
(fig. 15), these conditions become

(1) Q(z) has no singularities in the upper half of the z-pliane

(2) Q(z) = O at z=*1

(3) OR tie red -s, Q(z) = -1 for 1< z <a, md Q(z) = +1
for -a<z <-l

(4) On the real axLs, I.I?.Q(z)= 0, for Izl<l and for 121 >a

(5) Q(z) = O for

Outlhe of method.-

2 =0 and for Z=m 0

Consider the following two fmctims of z:

J &z02(x1-22 a2-z2 )

They can be considered as canplex velocities having the followlng
properties along the real tis (cayare reference 10):

WI is real between 1 and -1; between 1 and a, or between -1 and -a,
its real pert ib constant but an imagq b is titiducedj beyond a
or -a, the ~inary part is cons-tentwhile the real pert approaches
zeroj &P.wl(z) = -ROp.~l(-z)j I.P.~(z) = IOpOWl(-Z)

~ has the ssme properties as W1 except that beyond a and -a
its real part approaches m and -m, reactively

.

— —______ —..—— —.. — .—— - —-—— ——- —.-— —-—..
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. .

the two functions ere shown b figure 16. It should
possible to fti a linear combtitiau of these two func-
~,such that for l<z<a

( )-R.2. ~ + NW2 = -1

for -a<z <-l

( )
R.I?.~ + Nw2 = +1

and beyond a or -a

(1.2. ~ + NW2) = O

A simple additional function w
L

to be discussed subsequently is needed
to satisfy the condition at inf ty. The desired veloci~ function for
the closed-open-closedtunnel with.unequal pressures is thus of the form:

Q(z) = %(Z) + w2(z) + w3(z)

The cc&tents. M and N are derived in the two folhwdng sections..

Evaluation of intqg’als● - b the follming development, the modulus

of ti the elMptic integrals
hdicated b the symibols. Ih
e~pt.ic titegrds, E> E1~ F}
upper limits of integration.

~(l) = R.2.wl(a) =

is l/a;’the modulus will therefore not be
the desi~tions for the incomplete

l?’”,‘thetemns in parentheses are the

W2(1) = R.P.w2(a)
‘L’c’=”

fi’a
I.P.wl(a)

which by the s~stitution 22 . a2 - ~a2 - I)Z2 reduces t-o

.’

——— ,—— —— ---~ -,-..”: .- ,-, - - ,: ’:.,. ------ ,’.
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1.P.W2(a) .~{-.

which by tie substitution ~2
= a2 - (a2 -$’2 re~~e’ b

/

~2 - 172

ia

,’/&”.

I -Jwaz=“01 J(I - ,2)(- ‘2’; %9 o

= ielf’- ia’

the
in

Solution of simultaneous eguations for M & N.- witi tb aid Of

four formulas Just derived, the two previously mentioned equations
M and N may be written

&+ NaE.-l
a

k’ +1’kK’ - NaE’ O=
a

which are easily solved simultaneously for M and 1?. By introduc@
the follow3ng relation between the complete elliptic titegrals (referr
ence 11, p. ~0)

expressions

=! - =I+m!=;

for M and N are finally obtained in the following
forms:

f

M= ~(K’ - E’)

*I

N= ----&

.—. . -..——— .. ..- . ..— —-- ---- --- — — — —- .,._ _.— —__ ___ _____ ---- .. —-
.-,
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%lu.e of Mwl + I’Jw2at infinity.- The constants M and IV have
bOOn detamrLned so at J-.P. (~ + ~~) . () at ~~~j ~~e,

R.2.~ = O at inf~ty, as is clear frm figure 16. ‘lherefore, the
value of ~ + Nw2 at infinity is merely R .P.N~ at infhiti. It
is necessary to tivesti~te this Mmit ‘beforechoo=~ the form of W3,
because, as was preciously noted, the y~ose of W3 is to
provide Q(z) = O at inf~~. The 13mit may ‘bewritten

The fW-t term is simply IHE. h order to evaluate the second term,
substi~e z = ~

Ja vi-# –

=@J-ol*$

/

1
d2

2 2 2
“1

1
= - Na2 2+ ma

o V(1- ++ 0 22W -d4a2 -“2?

The first term M -NaK. b order to evaluatg the second term, it is
noted (reference12) that

.

//

.

.—. -—— —. . --— -— —-=.. . .. .-’...:.
/,,
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Transposing term ti this equation gives

whenoe

TT 1-

1

22) 1

2 0

The fimt two terms on the right
previously obtained, so that the

w 1

=NaK -IV&E-N
1- 22 .# - #

2 ‘1 o
t

me exadily cenoeled by the two tezmm
final result is:

klml R.P.NW2(Z) = ~ -N
z-=$

()

Na2+ l-...
=lim Nz-; T
Z*

— . ..— — .. . . . . . —— ._. — .——-—-. —-- _ ,.. —-—.,, —._ —.—— . .. .
,-, -
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Ikrivaticm of w~.- In order to cancel the effect of the

tezms ~ + NW2 at hfini~, the fuaction W3 must approach -R.P.Nw2(z)
as z @creases without lhit. b addition, it must have no shgularities
in the up~r half of the z-plane, it muet satisfy the condition of con’
tinuity at z = *1, it must he a pure real on the fixed boundaries and a
pure imag- on the free boundaries, and :t must be zero at z = O.
It is readily formulawa as

That this function satisfies the first condition is readily shown by
writing it h a s~ghtly different form end expen~ the radical:

=’-’Z==NZRZR
( a2-~

=Mm -Nzl+—
z+ m

222
+.. .)

8

=13m-Nz -
T?(a2- 1)

z+ m 2Z -”””

Comparison of this expression with that for lhn R .P.% (z) shows that
z-m

the difference between the two expressims approaches zero as z
approaches infbity. That the function satisfies the remdnlng ccmdltions
is readily verified by inspection. .

The ccqlex veloci~ function for the closed-opm-closed tucnel with
unegu.elpressures is, f~ly,

——.— —— ,— -
. .. . . :, ‘.,. ,.’-,--- ,,-
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or

35

where the ~ad,~ of the elliptic integrals is l/a.

(23) _\

Ihduced velocity on the ~s.- For the special case in which z = iy, .
the preceding eguations for Q reduce to a samewhat simpler form. m
procedure will be only outlined here, inasmuch as the manipulative steps
are similsx to iihoseelread.ydescribed.

z with iy in the expression for ~ end then s~sti~

-a 2 reduces the first term to

;(K’ - E’) K1 - l?’

(r)

1

1+ 2
~2

The seinemibstitutions, together with the previously described t.schniu
fram reference li?red~es the second tcnm to -

The tkbd term is found directly as

The to-tallsimplifies to the form

[ (kg) (!!!!1,Q(iy) = ~ -KiE1 — + E’F’ ~ (24)

. .—. —- -— ---—-—-.— ___ .- .-—-..- — .—. —— --— ... —.-... . — —.
,,
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Normal veloci~ and normsl displacement at the free surface.- The
normal veloci~ on the free surface x be written h the follo~ form:

ax

,, —.”

By the stistitution of # = a2 - (a2 - 1)22, the integrals
reduced to stanlard forms of fncmqileti elM@ic
eguation &kes the form

are readily
and the

The nomnal diqilacement, or distortion, of’the free surface is
found by
physical

integrat~ this expression along %e free surface h the
plane:

J

x
Nomal displacement at x = I.PoQ(x) dg

1

The htegral
of I.P.Q(x)

may be evaluated nunericslly; however, the thtrd term
is amenable to analytical treatment:

-. — —.-,, .... . . ,,
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, At the edge of the exit lip, where x = a, this expression reduces to

.

NUMERICAL luzsmrs

In the following sections are described same numericel results that
were computed by the preceding eguations in order to show the magnitudes
of the entice and etit effects. It will %e noted that, since the
complex velocity has been made nomtlmensional by ditiding by V, the
comyonent v is identical with the tunnel-induced engle c, in radians,
and the component u is the fractimal ticrease in the horizontal
velmi~. The equivalence of the two orUnate scales inddcated in the
plots of the results follows frcanthe eguation

Closed-open tucnel.- In figure 17 m shown calculated values of

the induced downwash angle along the tunnel axLs for various yositians
of the lift@ vortex along the axis. The figure shows that for El = 1.0
and 1.5, the induced angles at the,vortex itself (~ = 1.0 and 1.”5,

res~ectively) ere almost exactly $-, which is the value for en Whitely.
lcmg oyen tunnel; and, furthermore, the two curves are symmetrical about “
the ~oint g = El. Ih fact, within the accuracy of the plot, these two
curves ere identical with the curw3 for an infinitely lcmg open tunnel.
It may be concluded that the closed entrence has no effect if the vortex
is more than one tunnel height frcm the eniz’ante. For E1 = 0.5, which
is a more likely location of the dng, the tiduced mloci~ at g = El,
iS o.48rf, and the curve is no longer exactly ~symmtmical about the
petit g = ~ j however, these clifferences fmm the conditions for the
M?hitely long open tunnel me too small to be practically significant,
so that the usual’infinite-open-tunneltheory is still adequate
for 51 = 0.5. For 31 less than 0.5, the deviations from infinite- ~
open-tunnel theory become larger rapidly, until, when the vortex is in
the plane ?f the entience

(’1 = 0)>
the tiuced emgle at the point ~ = !.l

is only &o

A,Shikr?
h

scussion applies for the vortex in the closed portion
of tie tunnel 51<0 , although this case nomally has no practical
significance. For El = -1, the induced engles in the neighbcmhood of
the vortex ere practically identical with those for en infinitely long
closed tunnel; however, in the open region (~ > O), the curve is consider-
ably differeqk frciit&t for the Winitely
the dashed curve in fig ● 17) ●

I

..—

. . ,.’

lmg closed tmnel (shown as

..-—. -.-.-.———- ---— ——..——. .——
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.
Symmetrical closed-open-closedtunnel.- lh figme 18 are shown #

similax curves for a symmetrical closed-o~en-closedtunnel of which the
length of the open section is 1.5 thnes the tuunel height. All curves
show a sharp reduction in the hiuoed angle as the closed etit is approached
and entered; however, for El < 1, the closed exit has practically no
effect on the tiuced velocities at and upstream of the vortex. The
induced angle at the vortex decreases rapidly as the vortex moves down-.

streem frm about El = 1.0, and ‘is ~ tiiiheplane of the

exit (~1 = 1.5) .

Closed-open-closed tunnel with one exit lip.- Figure 19 ShOWS
results for a tunnel similar to that just discussed except that one exit lip
is alit-ted. The two curves shown are very similar to the corresponding
curves for the symmetrical conditimo As was pOtitia out earlier, the
horizontal caqmnent of the hawed veloci~ cm the -S is not zero for
this unsymnetiical configuration. Values of this horizontal component
have been plotted b figure 20 for the same two vortex locatims as in
figln’elg. The malues sre seen to be very small in the forward part of
the tuanel but became quite large in the neighborhood of the etit lip.
The effect is consistent with the concept of the exit Up as a concen-
tration of vortices hamtng total strength egual end opposite to that of
the bound vortex and serving thereby to turn the air back to its original
direction. The fact that the two curves are practically identical lends
further support to this tiewpoint.

Comparison of the three tunnel @es.- b figuzw 21 are compared

the induced-angle curves for 51 = 0.5 and 1.0 for the three tunnel
types just discussed. It is seen that the differences are slight up to
about ~ = 1.0; beyond this value the curves for the closed-oyen tunnel
continue to rise, while the others descend rapidly. The effect of the
closed exit is sanewhat larger for the tunnel with two exit lips than
for the tunnel with one efit lip. Although the tiuced angles become
slightly negative in the downs-em closed region they eventually return
to zero.

Symmetrical closed-open-closedtunnel with me gual pressures on the

two free surfaces.- By means of egua~ion (24) calculations were made of
the induced vertical.velocities on the axis of a closed-open-closed
tunnel of jet length egud to 1.5 tdnes the tunnel hei t and ha

r ?egusl and opposite horizontal pertm%ation velocities -~ and ~ on
the upper and lower free surfaces, respectively. .Theresults ere plotted
in figure 22. The curve shows that the vertical veloci~ component (or
the induced angle) has an almost linear variation along the axis, which
corresponds to the fairly unifozm curvature of the jet that would be
expectid to result freonthe pressure UfYermce betwem the u~er and
lower surfaces. For this same condition, the titegral of the normal
velocity along the free surfac~ (equation (25)), which is the downward
displacement of the jet boundery at the efit lip, was found to
be 3.8%.

. .. ——- ..— — .— –—.- -—— —,.,
. .
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For a vortex r 1 locatad at 51 = O.5 h the equal-~ressurecase,
the tntegral of the normal velocity along the free surface (equation (21)),
which is Noporticmal to the -d displacement of the jet boundary at the
exit lip, was found to be 1.201’1. Accordingly, zero displacement at the
exit correspondhg to the existence of a closed space above or below the
jet ~reference2), wlU result if the flow described in the prece~
P~@ is supenosed on the equal-wessufe flow h s~h ~oportion

that 3.8% = 1.20r*;,thatis, # = 0.31.. The corresponding effect on

the induced engl.eat ~ = & is’found as followa: at ~ . El = 0.5, +
for the equal-pressure case (fig. 18) is 0.48. Fran figure 22, ~ at

E = O.5 for the unequal-pressure case is -1.44. Stice ().31 x -~.44 . -0.45,
it is seen that, if spillage at the exit lip is prevenbd, the induced
velocity in the region of tie vortex is nearly eliminated. A Slbllik
comparison of the slopes of the curves in figures X3 and 22 in the
neighborhood of ~ = O.5 shows that the induced curvature in the regi&
of the vortex is also nearly eliminated.

R&mm& of numerical results.- The tiduced angle at the lifting
vortex is esf3entialJ.ythat for an 3nf3nite open jet if the vortex is more
than Hlf the tunnel height from tie entmance and the etit. The jna.uced
angles for case 2 (one fhd exit boundsry) sre neerly the seineas for
case 3 (symmetricalexit), so that any failure of the flow to contact the
upper exit lip should not appreciab~ sffect the tunuel correction.
Fjtaallly,for case 3, if enough of tbe different-pressureflow is added
to assure zero displacement of the tie boundary at the etit (that is,
if spillage at the exit is prevented, as by enclosing
which the spi31age would normally occur), the ina=ed
vortex may be nearly elhhated. .

III - CIRCULAR TUNNELS

the space into “
angle at the

9

Ih psrt III en out13ne is given of a gene= method for calculathg
the boundary effect ti en open circular tunnel of f~te jet length.
The solution, involmlng expansicms in Bessel functicms, is sanewhat
similar to the solution for a closed circulm tumnel (reference13),
but is constructed so that it satisfies the condition of -omi@ of
pressure over the open.boundary and also the condition of cwtlnui~ of
velocity at the entrance lip. I?urical results ere given for a liftdng
elemmt on the tunnel axis.

.. .. . . .._— —+— ..- —__. _.__. —-...—. ..— _,.. —- .. .. —.—- —— .. . .---—.
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SYMEOLS

rectangulm coordhmtes in unitsof the tunnel radius
with origin at liftlng element (see fig. 23)

cylindrical coordinates (see fig. 23)

E-COmWnateof en-ce and exit lips, respectively

E.,P, e

a, b

B variable of titegration

variabb of integration (see reference 13)

disturbance potential associated with body (or with
vortex system)

tunnel-induced yotentiell

tuunel-tiuced potential in closed cticulsr tunnel

residual potentiel[O - UICj

Bessel function of the ftist kind of order mJm

constant longituamll ~fiurbatia veloci@ on free surfaceu

a~A
mti Fourier sine coefficient of ~

Ip=l
mia i)@A

Fourier cos~ cmff icient of
~

p=l

%1(’) nticoefficient in series for ~(s) (g)

Stllzero of .Jm’(not including the zero at the origin)

mm Fourier sine coefficient of - ~
a~ P=l ,

rm(l)

wm~ Fourier cosine coefficient of -
ak >1

r (2)
m

tunnel-hduced velwi~ pmmeter
(+”*)

(

—.-— —-— ——. —,., .
—
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P

L

w

v

R

(icmsiti of fluid

lift of lifting element

tunnel-tiduced veloci& normal to the ~?-plane

free-abeam veloci~

tunnel radiw

flNKcKsIs

Introduction

332the enal.ysisof the three-dhnensional, circular, closed-open-
closed tunnel, an appreciable simplificatim results when the tunnel axis
lies h the plane of the horseshoe vcn%ex. For off-center locations of
the horseshm vortex, or for a source-shk body on the @sj or for the
general uns-tiical disturbance, certain complications arise that are
related to the fact that the pressure on the free boundsry is then not
equal to the pressure at *~ in the closed psrts of the tunqel. 5t
is, for these cases, if the net perturbation veloci~ is zero far
upstieam end downstream in the closed parts of tie tunnel, a constant
longitudinal perturbatim veloci~ u’# O will etist on the free surface.
(See parts I and H.) A similzw complication results for a source in a
canpletel.yclosed tunnel.

The analysis described in the following section is applicable
directly ti the case h which the tunnel sxis lies in the plane of the
horseshoe vortex and for which the longit~ perturbation velocity on
the free surface is zero. (See part I.) Ih the succeeding section are
derived the additional tires needed for the solution of the more general
problem. The si@ificance of the titles of these two sections will
become cleer b the smalysis.

CyMndrically Synmmtiic Term Omitted

Boun~ conditions and fomal expression for @A.- The solution

is develowd in cylindrical coor~tes (~.o.f3)where the ~-sxis
cohcides-with thb tunnel axis and 19 is-~~~d frm the horizontal

. The relations of these coorcMnatm to the rectmgular coordi-
L% (g,q,~) me indicated in figure 23. The distance variables E, T, c,
ma P are considered h units of the tumnel radius.

Let 00( ~,p,~) be the disturbance veloci@ pobtial assoc~%d

with the lift~ body h unlimited space (ti particular, the veloci~

. . .. . . . ------ . . .. .—...— ———-— -- -.— _ ~.—. .— .—. _ ___ ——. . . . .
,:
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potential of a horseshoe vortex). It is desired to find a func-
tion @ (~,p,f3),harmonic inside the cy13nder p = 1, for which (see
pert I)

w ‘0 ‘a<g<b)
p=l

where the region ~ <a, ~ > h is the closed portion of the tunnel
and a < ~ < b is the open port$on of the tunnel. Tn additim, accordtng
to the condition of continui~ at the entmnce lip (pert I), the

derivative
*[PI

must be

then the veloci~ ~otential
boundary. “

continuous at ~ = a. The function @ is

of the additional flow due to the tunnel

The function Q is conveniently considered

@.~+Q

h two parts:

where @c is the lnmwn tmnel-tiuced potential.
system in a caurpletelyclosed ctiular tunnel (reference

for the

_ conditions for-

(1) A@A = O

(2) ~ =

p=l

(3) -~ =

p=l

a@A .
(4) ~

p=l

sEuIiemrtex
13) ● The deter-

b)

.

—. —. —— ~. .–, .
.-,

.’, “. . . .
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The functim QA may be expressed fmmally (see reference 13) as

w

J

m Jm(ipq)

I 1’
b ~(2) (~) (X3Sq(~ - $) M+ Cos me~

fio-aqa
(26)

where ~(1) (~) and ~ (2)(~) ~, ~a~~tin~: tie

cosine coefficients of the Fourier series for

IF P=l
are variables of integration. The integrations over j3
general, have the range -~ to +M; however, condltim

J

mtitlsine and

Sndq anap

would, in
(2) shows that

. the functions ~(s) (p), ~ = 1, 2, are zero from -M to a and fran b
to +“. The convergence of this function and its derivatives to the
desired f~ti.n @A ~ its de@VatiVeS is discussed b the appendix
of reference 13. A modification is necessary

nuity h ~
p=l

ccmvergence may be
circle p = 1, ~ =

tha.t may exbt at g =b.

proved for regions bounded
b.

because of the disconti-

I?orthis case, the desired

away fra the

,
The assumption of zero perturbation veloci~ on the surface of the

Jet is equivalent to the assumption that the expensiu of
-WI.=,

in a Fourier series In 6’ contaims no tezm independent of e. For this”
reason no m = o term appears in expansion (26). The neti section
discusses the scmwhat special tieatznentthat is required when the
Fourier series contaims a term independent of e.

Evaluation of ~(j) (~)O- The functicm @A givm in the preceding

equation satisfies c
F

tions (1) and (2) regardless of the precise fomu

of the f
T

ti~ $m 3)(~). It is now desired to ftid the func-
tions ~ j)(g) for a < ~ < b euch that @A will satis~ conditions (3)
end (4)● To &xLs end the functions are represented by infhite series
of the form

(27)

.

. . ..— ----—. –-—-—-—- ---- ——-.. —.-——— - . . . . . ——-— ——— -—-- —----.--—-
,-, -
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-(Stice ~ j)(a) thereby equals zero, condition (4) is automatically

satisfied. Values of
!?

(j)(b) ere here assmwi to be finite, instead
of inf~te (see pert I ; the corresycmd@ inaccuracy, however, is
cOnsiaOrOa to exist mainiy h the hmmdiate region of
lip (E=b,p=l)o

Stistituting as series in equation (26) gims

~Ar

% eiit

1

J

where

J

m &(ipq)
J

b
p~(E,P) = $ z- Cos q(p - E) dP

~_aqasti2 b-a

and, for n + 0,

h the evaluaiihm.ofthese two expressions, the tier integrals may be

found analytically aml the outer titex, which ccmverge rapidly, may
be fomi numerically. It is possible, however, by meanq of contour
integration s~ to that ,aiscusseah reference 14, to iransfozm the
inf~te titagrals tito Hhite series that are more convenient for the
present purpose. The cmtour integration and the resulting infinite
series are given h appendix A.

Differentiating equation (28) with respect to 5 ami taking p = 1
gives

a m

M* LE[ apm(~,l)
“35 =

~(1) ah II@ a~

pa m.in.(1

1+%m(2)Cos ~ apyp) (29)

.— — - —— —— -. ,—. . ..- ,,. ... .
.-. .
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(The constents ~ ‘) are to be determined so that condition (3) is

satisfied. For this purpose the function
-* ‘s ‘-ea

p=l
in a Fourier series in O:

Equating coefficients in equations (29) snd (30) in order to satisfy
condition (3) then gives

rm(j)(E)= ~ ~(J)a2m[E’1) (j
n= o

It is assured that the functions rm‘j)(~) can be

= 1, 2)

satisfactorily approxi-
mated by a finite nmiber of terms of these series. This assumption seems

apm(~,l)reasonable, tismuch as
a~ is bounded as n approaches inftity

(see appen~ B) and ~(~) approaches zero as n approaches jnfin-lty.
.! Thus,

rm(j)(~) %
c

aP~(E,l)~(s) ~

n=.

‘S)(g) emd a- are computed at a set ofThe functions rm

points {Ei], i = O, 1, 2, s . . I, where I aN. The coefficients
are then-de”%rndned (method of least squares) so that the

is amhimm for all values of m and .1. For each pair
and j, this condition gives IV+ 1 eqtitions for the IV

%LI))

of values of m
+1
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unknowns hJj), hJ$)● ● . M(J), m -&e N + 1 partial d0KLw3tiWEl

with respect to ~(j) must be egual to zero. l?hese eguations are

(k=o; i,2, . ..N)

Ihmrks on the Comutatlm ●- The mints [E+]and the value of N
are chosen so that the addition of more Pointsbaad increasing the value
of N will no longer appreciably affect the results. It is-cleer that
the point ~ = b cannot be used and that cere must be -n not to
choose too large a ~oportion of the points {~~ h the neighborhood
of~=aand~ = b; any s’ti attempb to describe more accurately

the infinite values of %($)(g) at g = b or of its derivatives
at 6 =aandc = b with a finite n~q~ of coefficients will cause a

‘J’ (E) elsewlferein the fnter-large error in the approximations to ~

M a<~<b.

Stice the functions rm(j)(~) rapidly approach zero as m approaches
infmti,. the preceiUng eguationsne a be sOl~a for only a small nuniber
of values of m. ?The values of ~ $) thus obtained can be ~$sedto
give en approxhmtion to the function @A (equation (28)): !-7

Any aesirea interference veloci~ may now be oh-d by differentiating
this series term by term ma a&Ung the resul.tato the comespmding
titerference veloci~ for the clOsOd -1.

!lhevertical induced velocity in the @ane of syme~ is simply

for pdnts on the right side of the tunnel axis, or

for points on the left side of the tunnel ELKLS. Inspection of equatiau (31-)

—. -. -- ---
- .“ ...”..
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shows hmnediately that the e-derivative of the
is zero for either case and ths contribution of

47

second term in the bracket
the first term is

or

Furthermore, all vertical mlocities
by considering only m=l, because

p+o

on the ads itself may be obtained

~ o (m> 1)

The usual geometric symmetries also contribute toward s@iUf’yhgthe
calculations. For example, if thq horseshoe vortex lies h theLhari-
zontal plene of symmetry of thq tunnel,

.

3X, in addition, the vertical.plane of _@ of the $unnel is also
the vertical plane of symmetry of the horseshoe vortex, all even values
of m are elJMnated; h the correspond@ antisymmdmical case (as
with ailerm deflection) ECU_odd valum of m sz’eeliminated.

Cylindrically Synmetmic Term

For a normal velocity at the tunnel wsdl ~(~] that is independmt
of 13 the potential functim cannot be given e=ctly in tie fomn of the
preceddng sectim since for m = O the integral with reswct to q will,
in general, not cmverge for q h the neighbwhood of zero. It is
necessery to add additional.terms to the potmtial so as to inswe the
convergence of the integrals with respect to q. Mweovw, these terms
must he of such a nature that the potentisl functim is still hermonic
and givee the required normal velocity at the turmel waU.

----- .—---- -——-— —---— -—. — —--- - -- .--——--———— — ——-–-
. . ,,
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The

where k

value of

NACA TN NO. 1&6

singulsri~-free potential inside tie tunnel then takes the fozm

to etist.

The appearance of

J
a

and where ~(p) dp is the Cauchy principal
-m

Both the tit and the Imtkgrel mwt be assumed

these additicmal terms is not wholly due to the
presence of the own section in the -1. For a som’ce in a completely
closed tunnel the second temn does not vanish end would have to be used
in calculating the tumnel-inducedperturbation”velocity by the method of
reference 13. However, for a closed body or a vortex system plus its
reflections ti a completely closed iamnel, both’of these additimal
terms vanish.

It is easy to verify the fact tit the additional tams do insure
the convergence of the integral with respect to q. A s@aightiorward
differentiation then shows that Q is h fact hermonic.and satisfies

the boundary contition
a
#l

= ~(~).
p p=l

For the closed-open-closedtunnel, the boundary conditidn (see
part I) that the velocities far upstream and down@esm be equal is no
longer automatically satisfied by putting the total tangential veloci@
on the jet surface equal to zero. ~ dde~ con~tio~ for @A

exe now

(1) A@A = O

(2)

(P < 1)

(&<a ma ~>b)

.

..= ., -——— -.,. .————-
~., . .<.’ -
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●

(.g=a) <

Conditim (1) end (2) ere satisfied by assuming ~(~) = O for ~ < a
and g>b. Thus

Again it.is desired to find ~(~) for a < ~ < b so that @A will.
satisfy conditions (3),

{
4), and (5). There~esen-bationof ~(~) in

the seinefozm as before eguation

automatically satisfies contiticm
equation (32) gives

co

Q* = ‘=73n=

series h

. ..- —.—..—— _.. _—. —. —.-— -. ——4 .—. . ---
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●

The resulting MbitJ3 series for the Ph( ~,P) obtitied by DMXUU3
of contour tute~tims * given in appendix A.

Condition (3) then becams

But (see appendix A) M-m

a~A

g2m-=O. Thus it is necessaq that

There etists a unique

satis~ this equatim

value of u for which

anditcanbe foundas

hon=hon’+%n”

the coefficients ~ wiU

fOSLCWS: Iet

where

z apw(~ ,1)
%’ a~ = - a(”%+ “c

n= ‘1p=l
.

—— ——- —.—-.. ——— .——z . —.

., : -=.

.—

,,
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then if

@’+@ X)”

6

T ,@~(E,l)
hon”~=l

n=

u=- n =1
--

!a~” + L—-*.E - Gun]
n =1

The coefficients
of Btmulimleous linear

~’ and II@” ere fpmu$ by solution of sets
egiza-tl.ems,as d.esctibedin the yretious section.

me -tio~ @A’‘ = ~-~n’ ‘P~(~ ,p) is the’perturbation potential
which, when added to ~t of a unifomn ROW, gives the potential of the
disturbance-free expamding tunnel described in part I

~
indicated in

figure 2.
Al!

The correspmding yerturbatim velocities —
a~ have equal

and o~osite values at w and -m.

Aa a saewhat simplified illustration, the problem of a se@-
infinite unit doublet distribution (degeneratehorseshoe vortex) along
the tunnel exis was considered. The tunnel was assmed to have an open
jet, 3 tunnel radii in length. The tunnel titerference was calculated
for four different positions of the upstream end of the doublet Us-&i-
bution, these positi~ being 0.1, 0.4, 0.7, and 1.0 radii downstream
from the enirance. If the upstreem end is -n as the origin of the -
coordinate system, then (see ap~ndix C)

(33)

-.. . . . . ..—..- .— ..- ...-. . ..— .__. _________ . . . . ____ ________ ___,, —
:-’ ,,
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‘b~~mdK1._& e Bessel functions as defined in reference 15.

me points [Ei} were taken as a, a+ 0.3, a+ O.6, . ● ● a+ 2.7,
that is, a eet of ten points, at 0.3 fite

w
, starting with the entrance

lip of the tunnel. The ccmfficients h~ 1 were fount by the method of

.least sqwes for N = O,ql, . . . , 5 and’also so as to satisfy the
aPm(E,l)

egwtions q_(l)(~i) = ~ h~(l) ~E at all ten points. Plots

0 (1)(~) for the different values of IVof the result@g functic%= gl

indicated that convergence was essentially canplete for N between 3
end 50 ~s simplificationresulti in appreciable saving in the smount
of ccmptition. Not only is it necess~ to solve a smaller set of
dnmltaneous eguations, but *O P= md a~ta E need be fomd for.
fewer values of n.

The computation was fairly s-ghtforward ● k the dete~tion

of rl(l)(~), ~ and K1 Were.obmd frcm the tables of reference 15,

~d J1 aUd J1’ from the tables and fra the relations between the

Bessel functions and their derivatives (references15 end 16). Weddle’s
formula (reference 17) is convenient for ~rfordng the integrations.
h the case of ~, tie values of ysl appeer~ h the formula

for ~(s) (p) were found from the fommla in appendix ~ of refefi

ence 15, and J1 end J1’ as just noted. ti the evaluatim

of W $ P= it is ~tia that the value of Mm &l(x) = ;0
p+ o X+o

The results cf these ccmputatims, together witi tiose for ~
completely open and cca@etely closed tunnels and those given in refe~
ence 3 sre shown in figures 24, 25, and 26. h figwe 24, the verticsl
tumnel- induced veloci@ along the axis for the four clifferent positions
of the lifting element together with the results for the open and closed
tunnels ere plotted agahst distice fran the liftdng element. The
ssme results em plotted ag-t the longit~ distance fran the
entrance lip in figure 25. l?igure26 shows the results of reference 3
c~pa with the results of this paper for the same case - that of the
liftdng element 1 radius downstream from the entrence lip.

The tunnel-hduced veloci@ h the upstieam regions and h the
neighborhood of the Wting element, altiough only slightly less than
that for an open tunnel for the lifting element 1 radius downstiesm,
fells off mcme and more rapidly as the lifting element is moved towards
the enbmnca lip. ‘Themximmn induced veloci~ is attatied about 1 radius
upstream from the exit, and is never more them 78 percent of the ~
value for a compbtel..yopen tunnel. After the madmum the values fall
rapidly end a~roach tie values for a closed tunnel in the downstream
regions. The results of reference 3 (see fig. 26) are consistmrb~ below
the present results especially b the region behhd the lifting element.

—— — —— .— .--— —.— —y—
.- .,’ “:, - . .-:.
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An extrapolation from the present results hdicates that the induced
upflow at the lifting element, for the liftdng element in the plene of
the entrance l.ip~is approximately zero, or the average bewen tie
completely open and completely closed cases. The sams result (that the
effect in the plene of the entrance lip is the average of the effects
for the capletely open and the completely c~osed tunnels) was also
obtained for the two-dimensiti tunnel (fig. 18) .

CONCLUSION

.

For en open whd tunnel, the corrections corzwspond@ to an
infinitely long own jet will usually be adequately accurate if the
regim of interest (where the lift is located and where the bound.ery-
induced flow is being considered) is at least bald?the jet height,lfrom
the jet entrance and exit sections. As the distance of the lifting
element fran the entrance is decreased below this l~t, the bomuia~-
induced flow decreases mapidly end, when the Hfting element is h the
entrence plane, the induced angle al the Ilftin.gelement is about the
average of that for an open iamnel and that for a closed tunnel.

h the theoretical studies of these flows, the ususl boundery condi-
tions of pressure uniformi~ on the free surface and.of zero normal.
veloci~ on the closed surface must be supplemented with the conditions
that the velocity be continuous at the entiance lip @ that the velocities
fer downstream emd far upytream in the closed sections be egual. I?or
the two-MmensionsL open tunnel, a convenient general mathematical ayproach
is to transfomn the infinite strip (representingthe tunnel) to the upper

“ half-plane by the lo@ritbmic transformation and then to develop the
desired ccmplex velocity in this transformed plane. For the circular
own tunuel the solutim may be effected by expressing the potential.by
a fhit-e series of Bessel functions, satisfying the boundary condition
on the free surface at a fhite number of points, end solving for the
coefficients by simultaneous linser eguations.

For noncticulkw open wind tunuels, soluti~ in tams of available
functions wIEl be very inconvenient. For such cases, the trends indicated
by the present results may stifice, when applied to the presmably known
corrections for the infinitely long own and closed ‘confirmations, to
provide adequate corrections. Solutions for the general three-dhmsional
configurationmay also be possible by electrical-analogymethods, in—.. ..— ——. ..— — ———.—— ——
which either the perturbation veloci~ poimntial or the acceleration
potential is enalogous to the electrical potential ti an electrolyte
solution. Such enalogies may be chsmctirized, however, by ccmsidezable
technical mf icllltye

Langley Aeronautical Iabomtmy
National Advisory Committee for Aeronautics

Langley Air Force Base, Va., Decetier 20, 194-8

. .
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EVKCUM?ION Ol? Pn(&p)

Evaluatim for m+ O

NACA TN No. 1.826

0

contour titegration.- I?or n+O,

Ar integral may be found.directly:
.

9(P - E) @

(Al)

(A2)

The problem of evaluating Pm(~,p) thus reduces to that of evaluating -

titegrals of the fomn

J

~ Jm(ipq) cos kg dq

() iq~’(iq) (~ - h2)

Consider the integral h the ccmplex z-plane

1

$

Jm(ipz)efiz

X7
az

iz~’ (iz)(Z2 - h?)

—y -— — — .——— --
,. .’ -
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around the contour tidicated h figure 27. Its value is the sum of the
residues of the in-tam at its yoles bide the contow. These Toles
are the values of z for which Jm’(iz) = O. The zeros of Jm’ will

be def3ignated y~ they are real end may be obtained from the formula

in appendix III of reference 15. The yoles of the integrand then occur
at iz = ym, tkt is, “at z = -iymo Since cmly the poles withtn the

contour me desired, only the negative zeros of ~‘ are considered.

The residue of ,* at z = -iym is,

z + iym Z+iym
—=lim J
Jm’(iZ) ~’(iz) I

Z--i-iym Z++m - Jm (Ym)

since Jm’(y~) = O; by the definition of the derivatiw this expression

reduces to

-6
The residue of the titegrand at z‘= -iym is thus

*
,.

%(prdeemi
Yam(YSI112+ h2)Jm’‘(Yin)

But the Bessel functions satisfy the relhtim

() n?Jtl+$m’+ l-_ Jm=O
m x?

so &at at x = ym where Jm’ = O,

n?- ym’
Jm’‘(y~ = %(Ysm)

Ym2

whence, fm~

.

—..._- —._ . ~— —.— .—— . ... __. . . . ...__— ——. ..— —. —
,.
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where the nmber of terms h the sumatia depends on the radius of the
outer samicticle.

For k ~ O, if the z@lius of the outer semicircle is Wowed to
approach infini~ in d$screte steps so as to avoid the poles of the
intigrand, the.integral over the semic~le approaches zero. The
Mmiting values of the integrals along the _&o innsr semicircles, as
their radii a~roach zero, are readily detemdmed by the usual process as

Jm(-iph)e-~
i
kh2Jmi(-ih)

Jm(iph)em

‘4h2Jm~(ih)

These two tams may be ccmibinedlafter noting that reversing the sign
of the argument in Jm
to

- JRL’merely reverses the sign of their ratio,
.

+Ji@l)

,2h?JJ(ih) ‘k h
Equating
residues

the total integral along the inftnite contour to the sum of the
thus gives

.
where the y= terms are now defmd as the ~sitive zeros of Jm’

instead of the negative zeros (if ~1 (x) = O, so also does Jm’(-x)).”
By equating the im@nary part of _bheleft-hand term to the right-bend
side, which is a P imagimq, there results, fhe21y

--——
., .--”,
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[

m

o

Jm(ipq) COflkg dq = tiiJm(i@) ~ti ~

iqJm’(iq)(~ - h2) 2h2Jm’(ih)

Expressions for Pm, n+ O,m+ O.- ti the ~eceiklng development

it was assmd that k ~ O, which was acceptable tith regeml to equa-
tion (A2) in view of tie fact that the cosim is an even function of the
variable. This essentially nonne~tive value of k must he retaimii,
however, h the final expressions for ~m(@) :

‘* To[(7m)’+(b:$j$:(,~2-
‘Jm(,ympn’-’”ymym

B =

= -sin -i3sJ@
-a

(A3)

—. ..— —— ———. — ..—.. — -——--–. —.,,,,,
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.

For g < a,

.--Jp- -a

For 3 > b,

‘s-’+% .

. ..+ -a

The first term on the right-hand side of equation (A3) is thus equal to I

zero for g<a or ~>1. The desired e~essicms for Yn(~,P)j n # Oy I

are therefore, for a ~ ~ &b,

pm(E, P) =

‘m[~) ~ti ~~ - a

%%%’ (%%) b - a

“r-rli=o [ 1
~(s) (p) e- (~‘a)Ysm- (-l)ne- (b-~)Ym

Pm(E,P) = - *
z [ 1%(s) (p) e- l~-aIYS. - (-l)ne-lb-~1Ysm

s =

———- –- .—.,-- -———— ——— . . . —-—.,,., ,. ,,
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where

‘lhecalculations for n = O, which follow shdlsr lines, sre not
given here. The f- fommlas ere, for a ~~ <b,

+

[

Ql?l$s)(P) 7sme
-(3-~)y”m -6

rP@(E/P) = - “
[

-(E-b)ym + e-(~-a)y~–

J

Q&)(p) Y“m e

s o *=

where

LJs)(p) = Jm(PYsm)Ysm

‘:“m” + [+12}(m?-ym2)Jm(y~
Evaluation for m = O

. The evaluation of Yn( tj,p) for m = O proceeds essentially as
before with the difference that the cmtour of Integration must avoid
the origin. For n =0, tie f= formulas arefcr a.<~ <b,— .

-..-——— --- ---- —-. ——-— —— .—— —. ~ .Z . ..—
——— —.—

. .

.,-
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+
[

%O(s) Ysoe-b- E)YSO & 1~-( E-abso

and, for ~ >b,

qyj(E,P) =
-[%+12 -*

For n + O, the correspon~ fommlas are, for a s E < b,—

‘(w%)
“~j “ ==$+%

‘= ~ ~(st’-(’-asoso-(-’)%-(b-’)ysb-as=o

—. -— —. .._— .—- .- . ..— — - —-—---
,- .’ -
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for. !j.<a,

.

%(E,P)

b-a

-1

(-l)n(~ - ‘j

r

. .

.. ——.——.— -.— ————-.. .——. —.— ____ . . . . --—=——-—_. —. .. —__ ____
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APPWJDIX B

Differentiating the
putting p = 1 gives

fozmula frm appendix A for Pm(~ ,p) and

‘O” -i%

+ (-l)ne 1-(b-qym
The second tam of the right-hand

that

J. for large n ‘0mdber is of order
n

cosine factor of this expression merely oscillzLtesbetween 1 and -1.
the remaining factor, it is noted from the asymptotic e~ssions

The
● For

for

essentially of

the Bessel

shown that the

f%ctims -(reference 15, 1P. 59-61) that &(it) is

the fcm im~
w

as t-m, from which it can be readily

Jm(it)

‘tire m
approaches uni~ as t +CO.

——-. ----- __ _ -. —-- — —
. .
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0

JweENmX c

IMRIV..IOI?OF EQDATIDIV(32)\

Equation (~) was derived for use in calculating S- of the results
given in reference 13, but it was not explicitly Swtea and discussed
in that paper. Because cer~ steps in its development sre nob obvious,
the present outklne of its derivation is given. FamikLsri@ with refer-
ence 13 will be assmed.

Certain difficulties erise in the treatment of the doublet line
directly; so the result is found by considering a horseshoe vortex of
finite span and letting the span ap~oach zero. Equatim (6) of refer-

a’@2
ence 13 gives the formula for — Iap ~=1

(where ’32 is defined in refer-

ence 13) comespmdhg to a horseshm vortex of strength P and
span u having one tmailinn vortex along the tuanel -s end the other
to the right of the axis. The procedure for the dofilet conEists of
letting the yaw angle V be zero, e~ the raticals in ascehding
powers of a, end proceeding to the nefi ste~ in the enalysis, where u
will eventusXly be made to approach zeroo b the expansions, powers
of a higher thsn the ftit may be neglected emepb where c occurs
in the product Ea, since E ties on ~inite valms; f*rmore,
stice for the dotilet the field should be symmdrical aboti the vertical

plene of Syme-try (e=f)> unsymmetrical f ctors, as” a cos 13,may be

imediatdy eliminated. The fomnula for
%2

L’F .1
is thus

(Es-tie ~-

u(g*+ sin’%) )&
(cl)

According to the procedwe of zwference 13, it is necessary to maim a
I?ourier enalysis of the three terms in the braces and then to hsert the
Fourier coefficients in equation (8) of reference 13.

-. . . .. . . ..- ——.—. ——-—. .—— — ---- ——. . ——-.—— -———-
=-7--, ,
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Ih the first term h the braces. the expression in the

the expression
gives

NACA TN NO. 1826

brackets is
end hserthgthe ffist and only Fourier coeffici~t. Cha@ng ~ to 13

into the tier” integral of equation (8) of reference 13 -

which, if

[(
w

u+ o
-a R77-T%i)cOs‘(’-‘)“

titegratd by parts, reduces b

The contiibutim of the first term in the brackets is

(See reference 15, P ● % ●) ~e fact
term h the brackets is zero follws
chenge of variable p = 13cr,from the
p. 172).

The third term in the braces of
follows:

that the contribution of the second
iumdiately, upon perfomning the
Riemann-Labesgue lemma (reference

equaticm (Cl) is converted as

so that again the first and only Fourier coefficient is given -ctly.
~erting it into the tier ~tegral of equation (8) of-reference 13
and integrating by parts gives -

= -2qKJq) sin qg

— ,—=- .,. -,——.-— .-———
.. ,,”

......
... J., ?
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The second term in the braces of equation (Cl) is not a one-temn
Fourier series. Its n~ Fourier coefficient is given by a constant
times

)hserting this expression in the inner titegmd of equation (8) of refer-
ence 13, end reversing the order of integration gives

After substitution of ~ = J3a,the Mmit of the -r integral becames ~

.*)cos ,(-:-) (I.,

htegration by parts and eliminaticm of tezmm in ~ reduces this
expression to

.

which is zero, by the Riemmn-Lebesgue lema.

F-, tbn, for the unit dotilet
()
2=1

26tie
J

‘-,> Jl(iqp)
02 = — o ‘z[~(q) + KI(~ s~ q~ dqYc

—. . . . .. —----- .-z ——. ,—— -—. -——— ..—._ .-— —— ~— —--..-— -.—— -—-
, ,-
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The potential ~o of a unit do~let me along the axis is

whence

M. sin e

3E- p=l = (p + ~)3/’

The flow of the usual reflection vortices for wings of ftaite spen
reduces, as the span becomes abi~il.y mall, to a uniform upflow in
the finite secticm aP the tunnel 8nd therefore contributes nothing to
the longituttlnd veloci~ ●

The coefficient of sin 13 in - *IF, ‘s ‘w ‘em ‘0

be the ewessim given in equati~ (33)s

.

I

,- ——————- ,,
.-

;, .,. ,1

,, ------
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(a) Ui.nitely lopg o- tunnel.

69

(b) ,Openjet between closed entiranoeand exit regions.

Figure l.- 131@ratione for. discussion of mrfaoe perturbation velocity
h op9n wind -tunne M.
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\

.

/

(a) Contracting
both the
close to

jet. The pressure on th6 &es mrfaoe exoeeds
u~stibam and d~eam pressure, but is very
the upstream pressure.

\

(b) Expanding jet.
than either

The presswe on the free surface is less
the upstream or downstream p’essure, but is

Figure

very close to the upstiesm pressure.

2.– Contacting and expanding jets (2 or 3 dimensions).

.—— —.- ..T.— ...— — —. .—,
,“...”, ..- ... -. . .,. .
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(a) Straigbk exit.

Y Q-

(b) Bell+nouth exit.

/ .

I

1“’-
-

(c) Enolosed space beneath the lower free surface (tw-
Umensimal tunnel).

Figure 3.- SpiUage from the lower lip of the etit.

71
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Figure k.– Two-MnmnEional jet
free

with different pressures on ths two
surfaces.
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(a) Deformation due to
at the

F-
L
image system;
wing itself.

.

no downwash

(b) Uudeformed upstream flow; downwash at wing
is half of that at infinity.

Figure 5.– Twcd3mensional open tunnel of infinite length.

. .. . . . ..- --.—. ..— — _ .—. — ~—-.- ——-——— ——-— --- --. .— -. -—-— —.-—-
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(a) Two-dimnsional vortex, showing current @s between the
two ybtes.

(b) .Tm-dimensional vortex in a ~baticm field havfng a horizontal
velocity component. ,

(c) Thre~nsional element of lift.

(d) Horseshoe vortex of finite s-.

Figure 6.– Veloci@-potential analogies for two- and three-dhmsional
13$tAng elements.

.,. , –--. —-. -.—-
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I

77

/f”’’’’’ ””@l
I v

/’

/
/

(a) Vortex on the center 1-.

I . *

(bj~tricdlY located

L 1

=J?5=
Wrtex.

Figure 7.- Velocity-potential analogbs for the twcAimeIIEional
closed-pen tunnel.

.
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(a) Vortex on the center 13ne.

I

(b) Unspnetrically located vortex.(incompletere~esentation) .

Figure 8.–

7

/),, ,,, /,,,,,. u / /// / / / / / / / >

or contracting jet.(c) Expanding

Veloci@–potential analogies for the ~nsional closed-
open<losed tumnel. .

.

_— — —–.;... .—— —y— -...,,~.
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(a) Lifting elemmt on the center line.

(i) UIEymmetrical.location of the lifting element.

F@me 9.– Acceleratio*lotential analogies for the two-Wnensional
closed+pen tunnel.

.

. . -. . ...- .. —..-., ---- ,———___ _.. - –—.—.- ———— —- .——-. -- ——— —— .—.
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(a) Lifting element on ths center line.

(b) Tunnelarrangement that correspmds to omitt3ng the additional
short Stiips.

\ \

(c) Eqmnding or contiacthg jet.

(d) Curving ~et.

Figure 10.– AcceleratioFyotenW analogies for the tw-dimensiOnal-
closed~pe=losed- tunnel.

.

.
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(a) C.lose’d-opentpnnel.

.
. .

(b) Open seution represented by many
longitudinal strips.

-

(c) OPen section ”represented by only
two longitudinal strips. ‘

ktgure 11.- Aeoeleratia-potential analogy for thres-dimemioml
olosed-open tunnel and two approximate acceleratim-potenti~
analogies for three-dimensi-l closed-open-closedtunnels.
The closed-open analogy may also be considered as an approxi-
mate analogy for the olosed-open-closedtunnel.

._ . .—.——
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.

\
minus

equals w

(.a) Representation of’lifting element.

minus

equals

equals

=s=
(b) Representation of o e~~m#ry b

closed-open-close $

Figure 12.- Acceleration-potential analogies as the
difference between two velocity-potential analogies
slightly shifted -relative to each other.

.,
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.

g-pble

~1 Bt (jr
-—-—. . ..-— .

*

A c
~ ——- —— —— -

+

.

s-plane

(Jt %%?-----:::——————————+
●☎

-!5=

Figure 13.– Pbysicel and.transfomned
tumlel of unit bight.

two-umemional
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$-plane

Al BI Ct
——. — ———— —-—— ———— ———

+

– .:.

S5-pla?le

z ~rlp=

a= e==

==---&-----$ $---: 2
c?

-1
● z

Figure 140- Physical and transformed spaces for two-
dimensi,onal tunnel of unit height with one exit boundary.
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“%
z-plane

(jt DI
——— ——

~ -a W----* -----H-----: 2

Figure 15.- P@ical and transformed spaces for s-tiical- two-
d3menEional.closed~pe~loeed tunnel of unit height.
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..!

.-
z-plane

Ct Dt
.—— —

~ -8 ++-----:!----+j----: ~

31 A?L B

c1

.

“

c

112(Z)

Figure 16.= Maps of the functi?ns W@ and In@).
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0
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Di8ti61%Oefrom entrance, ~, units of tunnel height

Figure 18.- Tunnel-inducedangle on axis of symmetrical t.vo-
dlmenaional closed-open-oloaed tunnel, with vortex at several
locationa along axis. Length of open section is 1.5 ttis
tunnel height.

I



i

~,

,8

,5

\

.6 /

/p Y–---.
/

/
\

/ \
\

.4 / ‘ /
/ \

/ \’\

/
/ \

\\ \
,2 /

/

- T---; -------------- “ ‘Y<
—-— .— - —-= -

0 - F@2J..
\.\. .~ . — -—

?2
o .4 .8 L2 /6 2.0 24 2,8 32

Distianoefrom entrance, ~, unite or tunnel height

Figure 19.- Tunnel-induced angle on axis of two-dimensional
olo8ed-open-olosed tunnel having one exit lip, with vortex
at two locations along axia. Length of lower free surfaoe
is 1.5 ttiea tunnel hel~t.
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types of two+llmenaional tunnels. Length of open sections for
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“ Z&3!!E<:
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/

/
v
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0 9.4 .8 L2 L6
Distance from entrance, ~, units of tunnel

.

J’

height

Figure 22.- Tunnel-induced vertical velocity v “on axis of
symmetrical two-dimensional closed-open-closed tunnel
having additional V0kXitf09 of -ub and Ub on the
upper and lower free boundaries, respectively. Length of
open section is 1.5 times tunnel height.
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.

93

0

Flgure2~–Closed-open-closedfunnel,showing
. coordinufeSystetii.
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Dkhnce from tiffing e~emenf .4, units of funnel radius
Figure 24.- Tunnet - induced velocity pamme~er abng tunnel axk for sewul

petitions of the Iiting element In o cbsed-open-closed circular twwl.
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Method of reference 3- ‘
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/2 L6 2.0

‘*’TT7
Figure 26..–Com@rison of the results of th~ resenf

#poper wit.. ?hose of reference 3 or q=-/,
“ toget..er with those for o~ea utid closed

cv&A7r Zmnels.
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figure

97

Y
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=J9=
2Z-Puth of complex contour integration.
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